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1. AGM in Real Numbers

We will first define arithmetic-geometric mean(agm) of two numbers positive real numbers a and
b. This is the common limit of two sequences {an}∞n=0 and {bn}∞n=0, where sequences are defined by:

a0 = a, b0 = b

an+1 = (an + bn)/2

bn+1 = (anbn)1/2
(1.1)

First observation is an ≥ bn for all n.

an+1 ≥ bn+1 ⇐⇒
an + bn

2 ≥
√
anbn ⇐⇒ a2

n + b2
n − 2anbn ≥ 0 (1.2)

Because (an−bn)2 ≥ 0 is true always, an+1 ≥ bn+1 is true for all n > 0. Without any loss of generality
let a ≥ b so that an ≥ bn is true for all n.

Not only an ≥ bn is true but;

an+1 ≤ an ⇐⇒
an + bn

2 ≤ an ⇐⇒ bn ≤ an

bn ≤ bn+1 ⇐⇒ bn ≤
√
anbn ⇐⇒ bn ≤ an

(1.3)

From (1.3) we obtain;
bn ≤ bn+1 ≤ an+1 ≤ an (1.4)

Now it is left to show that they converge to common limit.

0 ≤ an+1 − bn+1 = an + bn
2 −

√
anbn = 1

2

(√
an −

√
bn

)2
= 1

2
(an − bn)2

(√an +
√
bn)2 (1.5)
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This shows that
0 ≤ an+1 − bn+1 ≤

1
2(an − bn) ≤ 2−n(a− b) (1.6)

Hence limn→∞ an and limn→∞ bn exists and equal. We will denote this common limit as;

M(a, b) = lim
n→∞

an = lim
n→∞

bn (1.7)

There are two obvious but useful properties of agm:
M(a, b) = M(a1, b1) = M(a2, b2) = . . .

M(λa, λb) = λM(a, b)
(1.8)

Note 1. It is useful to note a quantity cn+1 := 1
2 (an − bn). From this definition we can show;

4ancn = (an−1 + bn−1)(an−1 − bn−1) = (an−2 − bn−2)2

4 = c2
n−1 (1.9)

Or in convenient form;

cn =
c2
n−1
4an

(1.10)

We now give a definition for pth-order convergence and show that agm converges quadratically.

Definition 1. We say αn → α with pth-order convergence if∣∣∣∣ αn+1 − α
(αn − α)p

∣∣∣∣ = O(1) (1.11)

where O(1) is usual big-O notation. Moreover if αn are functions defined for all x in a set K, and
constant is independent of x then we say that convergence is uniformly pth order.

Roughly speaking, quadratic convergence doubles the number of digits that agree between successive
iterates and the limit.

Let αn = an − bn and hence αn → 0.∣∣∣∣αn+1

α2
n

∣∣∣∣ =
∣∣∣∣12 (an − bn)2

(√an +
√
bn)2

1
(an − bn)2

∣∣∣∣
= 1

2

∣∣∣∣ 1
(√an +

√
bn)2

∣∣∣∣ ≤ 1
2b

(1.12)

From (1.12), a and b restricted to compact subsets of (0,∞) implies uniform quadratic convergence
for M(a, b).

Now we state and prove the theorem that relates agm to elliptic integrals and then we will work
on properties.

Theorem 1. If a ≥ b > 0, then

M(a, b)
∫ π/2

0
(a2 cos2 φ+ b2 sin2 φ)−1/2dφ = π

2 (1.13)

3 different proof are given for theorem (1) in seperate subsections. Rest of the discussion will refer
to first proof.

An application of theorem (1) is the arc length of the lemniscate r2 = cos 2θ:

4
∫ π/4

0
(r2 + (dr/dθ)2)1/2dθ = 4

∫ π/4

0
(cos 2θ)−1/2dθ (1.14)

Substitute cos 2θ = cos2φ;

4
∫ π/2

0
(1 + cos2 φ)−1/2dφ = 4

∫ π/2

0
(2 cos2 φ+ sin2 φ)−1/2dφ = M(

√
2, 1) (1.15)
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Our observations can be related to classical theory of complete elliptic integrals of the first kind,
i.e. integrals of the form;

K(k, π/2) =
∫ π/2

0
(1− k2 sin2 φ)−1/2dφ =

∫ 1

0
((1− z2)(1− k2z2))−1/2dz (1.16)

Substitution z = sinφ, dz = cosφdφ =
√

1− z2dφ shows the second equality. Now let k = a−b
a+b ;

2
√
k

1 + k
= 2
√
a− b
a+ b

a+ b

2a =
√
a2 − b2

a
and k =

√
a2

1 − b2
1

a1
(1.17)

Observe I(a, b) = a−1K( 2
√
k

1+k , π/2):

a−1K

(
2
√
k

1 + k
, π/2

)
= a−1

∫ π/2

0
a(a2 − (a2 − b2) sin2 θ)

=
∫ π/2

0
(a2 cos2 φ+ b2 sin2 φ)dφ

(1.18)

and I(a1, b1) = a−1
1 K(k, π/2) follows exactly from (1.17). Now (1.48) is equivalent to;

K

(
2
√
k

1 + k
, π/2

)
= (1 + k)K(k, π/2) (1.19)

Using (1.22) will give the well known agm relation;

f(x) = 1 + x

2 f

(
2
√
x

1 + x

)
(1.20)

Note that substitution (1.50) can be written as;

sinφ = (1 + k) sin θ
1 + k sin2 θ

= 2a sin θ
a+ b+ (a− b) sin2 θ

(1.21)

which is now called Gauss Transformation.
We can restate Theorem 1 for 0 ≤ k < 1 as;

1
M(1 + k, 1− k) = 2

π

∫ π/2

0
(1− k2 sin2 θ)−1/2dθ = 2

π
K(k, π/2) (1.22)

Proof.
M(1 + k, 1− k)−1 = M(1,

√
1− k2)−1

= 2
π

∫ π/2

0
(cos2 φ+ (1− k2) sin2 φ)−1/2dφ

= 2
π

∫ π/2

0
(1− k2 sin2 φ)−1/2dφ

(1.23)

�

Finally set k′ =
√

1− k2 and rewrite (1.22) as;

1
M(1, k′) = 2

π

∫ π/2

0
(1− k2 sin2 φ)−1/2dφ (1.24)

Gauss‘s interpretation is; average value of the function (1 − k2 sin2 φ)−1/2 on the interval [0, π/2] is
the reciprocal of the agm of the reciprocals of the minimum and maximum values of the function.

We now have an integral represantation of agm, but series representation is know for integral in
(1.24) and given by;

1
M(1, k′) =

∞∑
n=0

(
1 · 3 · 5 · · · (2n− 1)

n!2n

)2
k2n (1.25)



4 MELIH ISERI

Proof. First of all it is necessary to find;∫ π/2

0
(sinφ)2ndφ = 1

(2i)2n

∫ π/2

0
(eiφ − e−iφ)2ndφ

= 1
(2i)2n

∫ π/2

0

2n∑
k=0

(−1)k
(

2n
k

)
eiφ(2n−k)e−iφkdφ

= 1
(2i)2n

2n∑
k=0

(−1)k
(

2n
k

)∫ π/2

0
e2iφ(n−k)dφ

(1.26)

Now it is important to notice that integral of exponential will be different if n = k.1∫ π/2

0
e2iφ(n−k)dφ =

{
(−1)n−k
2i(n−k) −

1
2i(n−k) if n 6= k

π
2 if n = k

(1.27)

Key observation is that under the summation over k, terms that k 6= n will cancel each other. Hence
only n = k term left. And also (−1)n terms cancels out. Then we get;∫ π/2

0
(sinφ)2ndφ = 1

22n
π

2

(
2n
n

)
= 1

22n
π

2
(2n)!
(n!)2 = π

2
1

2nn!

n∏
k=1

(2k − 1) (1.28)

We also need to show one direct identity.

1
2n

(2n)!
n! =

n∏
k=1

(2k − 1) =
2n∏
k=1

k

n∏
k=1

(2k)−1

= (2n)!
2nn!

(1.29)

Now lets turn back to integral representation of agm. Recall that 0 ≤ k < 1 hence we can expand
root in taylor series and it is uniformly convergent.

2
π

∫ π/2

0
(1− k2 sin2 φ)−1/2dφ

= 2
π

∫ π/2

0

∞∑
n=0

(
1 · 2 · 3 · · · (2n− 1)

n!2n

)
k2n(sinφ)2n

= 2
π

∞∑
n=0

(
1 · 2 · 3 · · · (2n− 1)

n!2n

)
k2n

∫ π/2

0
(sinφ)2n

(1.30)

Use (1.28) and proof is done for series representation of agm. �

We can observe from series representation of agm that it solves hypergeometric differential equation;

(k3 − k)y′′ + (3k2 − 1)y′ + ky = 0 (1.31)

Proof. Lets first find derivatives of series representation;

y′ =
∞∑
n=0

2n
(

1 · 2 · · · (2n− 1)
n!2n

)2
k2n−1

y′′ =
∞∑
n=0

2n(2n− 1)
(

1 · 2 · · · (2n− 1)
n!2n

)2
k2n−2

(1.32)

1To make it clear, here k is a summation variable and not related to k in agm.
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(1.31) turns into:
∞∑
n=0

(
1 · 2 · · · (2n− 1)

n!2n

)2 [
(2n+ 1)2k2n+1 − 4n2k2n−1)

]
= 0

∞∑
n=0

(
1 · 2 · · · (2n− 1)

n!2n

)2 [
(2n+ 1)2k2n+1]

=
∞∑
n=0

(
1 · 2 · · · (2n− 1)

n!2n

)2 [
4n2k2n−1]

=
∞∑
n=0

(
1 · 2 · · · (2n− 1)

n!2n

)2 [
(2n+ 1)2k2n+1]

(1.33)

This proves that y(k) = (M(1 + k, 1− k))−1 = (M(1,
√

1− k2))−1 solves the equation. Moreover we
can show that (M(1, k))−1 also a solution; Let b =

√
1− k2. Then observe k =

√
1− b2. Hence;

y
(√

1− k2
)

= 1
M(1, b) = y(b) (1.34)

It is sufficient to show that y(
√

1− k2) is also a solution to (1.31).

∂

∂k
y(b) = ∂

∂b
y(b) ∂

∂k
b = y′(b)(−k)(1− k2)−1/2 = −y′

√
1− b2/b

∂2

∂k2 y(b) = ∂2

∂b2 y(b)
(
∂

∂k
b

)2
+ ∂

∂b
y(b) ∂

2

∂k2 b

= y′′(b)k2(1− k2)−1 − y′(b)
(

(1− k2)−1/2 + k2(1− k2)−3/2)
)

= y′′(b)(1− b2)/b2 − y′(b)
(
1/b+ (1− b2)/b3)

(1.35)

Transform (1.31) to variable b and scale equation by b/
√

1− b2;

b(b2 − 1)y′′(b) + y′(b)− y′(b)(2− 3b2) + by(b) = 0 (1.36)

Therefore (M(1, b))−1 also solves the equation. General solution to (1.31) is given by;

y(k) = A

M(1 + k, 1− k) + B

M(1, k) (1.37)

�

It is also important to see how Gauss found this differential equation. In his works; from series
representations he note quantities y, ky′ and k2y′′ + ky′. Then it was obvious for him to observe
differential equation. We can observe last quantity‘s summation variable can be shifted, and then it
is easy to observe;

k2y′′(k) + 3ky′(k) + y(k) = 1
k2

(
k2y′′(k) + ky′(k)

)
(1.38)

which is equivalent to (1.31).
We analysed complete elliptic integrals of the first kind and its relation to AGM. We will introduce

complete eliptic integrals of the second kind and observe some relations with first kind.

E(k, π/2) =
∫ π/2

0

√
1− k2 sin2 θdθ =

∫ 1

0

√
1− k2t2√
1− t2

(1.39)

Finding series representation of E(k, π/2) is very similar to K(k, π/2). It is required to expand
(1− x)1/2 and then end result is given as;

E(k, π/2) = π

2

{
1−

∞∑
n=1

(
1 · 3 · · · (2n− 1)

n!2n

)2
k2n

2n− 1

}
(1.40)
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Integrals of the first kind and the second are related by;
dE

dk
= E −K

k
dK

dk
= E − (1− k2)K

k(1− k2)

(1.41)

Proof. For first relation, differentiate (1.39);

dE

dk
=
∫ π/2

0

−k sin2 θ√
1− k2 sin2 θ

dθ (1.42)

and right hand side is;

E −K
k

= 1
k

∫ π/2

0

√
1− k2 sin2 θ − 1√

1− k2 sin2 θ

=
∫ π/2

0

−k sin2 θ√
1− k2 sin2 θ

(1.43)

For the second relation, let us use series representation of K and E. Starting again from left hand
side;

(k − k3)dK
dk

= π

2

∞∑
n=0

(
1 · 3 · · · (2n− 1)

n!2n

)2
(2n)k2n

− π

2

∞∑
n=0

(
1 · 3 · · · (2n− 1)

n!2n

)2
(2n)k2n+2

= π

2

∞∑
n=0

(
1 · 3 · · · (2n− 1)

n!2n

)2
k2n+2

2(n+ 1)

(1.44)

And;

E − (1− k2)K = −π2

∞∑
n=1

(
1 · 3 · · · (2n− 1)

n!2n

)2( 2n
2n− 1

)
k2n

+ π

2

∞∑
n=0

(
1 · 3 · · · (2n− 1)

n!2n

)2
k2n+2

(1.45)

Shift the summation variable of the upper sumation;
∞∑
n=1

(
1 · 3 · · · (2n− 1)

n!2n

)2( 2n
2n− 1

)
k2n

=
∞∑
n=0

(
1 · 3 · · · (2n− 1)

n!2n

)2 (2n+ 1)
2(n+ 1)k

2n+2
(1.46)

Hence;

E − (1− k2)K = π

2

∞∑
n=0

(
1 · 3 · · · (2n− 1)

n!2n

)2
k2n+2

2(n+ 1) (1.47)

�

1.1. First proof of Theorem 1.

Proof. Let I(a, b) represent integral expression. It is sufficient to show that

I(a, b) = I(a1, b1) (1.48)

which implies I(a, b) = limn→∞ I(an, bn) = I(M(a, b),M(a, b)). Then observe,

I(M(a, b),M(a, b)) = M(a, b)−1
∫ π/2

0
dφ = π

2M(a, b)−1 (1.49)
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To show (1.48), we need to make a change of variable. This is introduced by Gauss.

sinφ = 2a sin θ
a+ b+ (a− b) sin2 θ

(1.50)

To be sure that this expression is well defined,
2a sin θ

a+ b+ (a− b) sin2 θ
≤ 2 sin θ

(1 + sin2 θ)
≤ 1 (1.51)

and attains 0 and 1 at θ = 0, π/2. Moreover, one should also check x = sin θ derivative to be sure
that function is always increasing.

We should show that;

cosφ = 2 cos θ(a2
1 cos2 θ + b2

1 sin2 θ)1/2

a+ b+ (a− b) sin2 θ
(1.52)

Proof. We will use the identity cos2 φ+ sin2 φ = 1, but first

a2
1 − b2

1 =
(
a+ b

2

)2
− ab = (a− b)2

4 (1.53)

Now writing the identity by using (1.50) and (1.52) results;

(a+ b+ (a− b) sin2 θ)2 − (2a sin θ)2 = 4 cos2 θ(a2
1 cos2 θ + b2

1 sin2 θ) (1.54)

Manipulate terms side by side:

((a+ b) + (a− b) sin2 θ)2 − 4a2 sin2 θ

= (a+ b)2 + 2(a2 − b2 − 2a2) sin2 θ + (a− b)2 sin4 θ

= (a+ b)2 − 2(a2 + b2) sin2 θ + (a− b)2 sin4 θ

(1.55)

and;
4 cos2 θ(a2

1 cos2 θ + b2
1 sin2 θ)

= 4 cos2 θ(a2
1 − (a2

1 − b2
1) sin2 θ)

= cos2 θ((a+ b)2 − (a− b)2 sin2 θ)
= (a+ b)2 − (a− b)2 sin2 θ − (a+ b)2 sin2 θ + (a− b)2 sin4 θ

= (a+ b)2 − 2(a2 + b2) sin2 θ + (a− b)2 sin4 θ

(1.56)

�

Next we need to show;

(a2 cos2 φ+ b2 sin2 φ)1/2 = a
a+ b− (a− b) sin2 θ

a+ b+ (a− b) sin2 θ
(1.57)

Proof. Starting from left-hand side;

(a2 cos2 φ+ b2 sin2 φ)1/2 = (a2 − (a2 − b2) sin2 φ)1/2 (1.58)

Use (1.50) and ignore denominator.

= a((a+ b+ (a− b) sin2 θ)2 − 4(a2 − b2) sin2 θ)1/2

= a(a+ b− (a− b) sin2 θ)
(1.59)

�

Now differentiate (1.50);

cosφdφ = 2a cos θ(a+ b+ (a− b) sin2 θ)− 4a(a− b) cos θ sin2 θ

(a+ b+ (a− b) sin2 θ)2 dθ (1.60)
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Use (1.52) and manipulate terms;

(a2
1 cos2 θ + b2

1 sin2 θ)1/2dφ = a(a+ b+ (a− b) sin2 θ)− 2a(a− b) sin2 θ

a+ b+ (a− b) sin2 θ
dθ

(a2
1 cos2 θ + b2

1 sin2 θ)1/2dφ = a
a+ b− (a− b) sin2 θ

a+ b+ (a− b) sin2 θ
dθ

(a2
1 cos2 φ+ b2

1 sin2 φ)−1/2dφ = (a2 cos2 θ + b2 sin2 θ)−1/2dθ

(1.61)

This proves that integral does not change when a and b is iterated by agm. �

1.2. Second proof of Theorem 1. There is another proof of (1) which again uses change of variable,
but in a different way and terms should has to be manipulated carefully.

Proof. Start with very similar integral;

T (a, b) = 2
π

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

(1.62)

Then make a substitution t = b tan θ;

T (a, b) = 2
π

∫ ∞
0

(
a2 b2

t2 + b2 + b2 t2

t2 + b2

)−1/2(
b

t2 + b2

)
dt

= 2
π

∫ ∞
0

dt√
(a2 + t2)(b2 + t2)

= 1
π

∫ ∞
−∞

dt√
(a2 + t2)(b2 + t2)

(1.63)

Now substitute u = 1
2 (t− ab/t) but first, terms should be arranged nicely;

= 2
π

∫ ∞
0

dt

t
√

(t− ab
t + a2

t + ab
t )(t− ab

t + b2

t + ab
t )

= 2
π

∫ ∞
0

dt

2t
√

(u+ a(a+b)
2t )(u+ b(a+b)

2t )

(1.64)

Now lets find the differential element:

du = 1
2

(
1 + ab

t2

)
dt (1.65)

Hence;

2du
(
t+ ab

t

)−1
= dt

t

2du
(

2u+ 2ab
t

)−1
= dt

t

du

2

(
u+ ab

t

)−1
= dt

2t

(1.66)

Observe that limits for u is from −∞ to ∞ and rewrite (1.64);
1
π

∫ ∞
−∞

du

(u+ ab
t )
√

(u+ a(a+b)
2t )(u+ b(a+b)

2t )
(1.67)

Lets first observe; (
u+ a(a+ b)

2t

)(
u+ b(a+ b)

2t

)
= u2 + u

2t (a+ b)2 + ab(a+ b)2

4t2

= u2 + (a+ b)2/4
(1.68)
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And also; (
u+ ab

t

)2
= u2 + u

t
2ab+ (ab)2

t2

= u2 + ab− (ab)2

t2
+ (ab)2

t2

= u2 + ab

(1.69)

At the end, we get;
1
π

∫ ∞
−∞

du√
(u2 + a2

1)(u2 + b2
1)

(1.70)

This proves T (a, b) = T (a1, b1). �

1.3. Third Proof of Theorem 1. In this section, I will follow Gauss‘s work on ’Werke’, III, pg.366-
369. We start with assuming that (M(1 + x, 1 − x))−1 is analytic in some neighbourhood of zero.
Then it follows;

1
M(1 + x, 1− x) = d0 + d1x

2 + d2x
4 + d3x

6 + · · · (1.71)

where d0 = 1 but I prefer to leave it as d0. We also know;
1

M(1 + 2
√
x/(1 + x), 1− 2

√
x/(1 + x)

= 1
M(1,

√
1− 4x/(1 + x)2)

= 1 + x

M(1 + x, 1− x)

(1.72)

This equality under series expansion can be written as;

(1 + x)(d0 + d1x
2 + d2x

4 + · · · ) = d0 + d1

(
2
√
x

1 + x

)2

+ d2

(
2
√
x

1 + x

)4

+ · · · (1.73)

Let x = t2 and multiply by 2t/(1 + t2);

2t(d0 + d1t
4 + d2t

8 + · · · ) = d0

(
2t

1 + t2

)
+ d1

(
2t

1 + t2

)3
+ d2

(
2t

1 + t2

)5
+ · · · (1.74)

Define fn(x) = (1 + x)−n and differentiate to find series expansion;

f ′n(x) = −n(1 + x)−n−1, f ′′n (x) = n(n+ 1)(1 + x)−n−2,

f ′′′n (x) = −n(n+ 1)(n+ 2)(1 + x)−n−3 etc.
(1.75)

Hence fn(x) in series is;

fn(x) = 1− nx+ n(n+ 1)
2! x2 − n(n+ 1)(n+ 2)

3! x3 · · ·

=
∞∑
j=0

(−1)j n(n+ 1) · · · (n+ j − 1)
j! xj

(1.76)

On the right hand side of (1.74) each term can be represented as;

dn(2t)2n+1f2n+1(t2) = dn22n+1
∞∑
j=0

(−1)j (2n+ 1)(2n+ 2) · · · (2n+ j)
j! t2n+2j+1 (1.77)

Rewrite (1.74) as;
d0t+ d1t

5 + d2t
9 + d3t

13 + · · · =
∞∑
n=0

dn
22n

(2n)!

∞∑
j=0

(−1)j (2n+ j)!
j! t2n+2j+1 (1.78)
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Now we can start to match coefficients of t‘s. On top, (4n+ 1) terms corresponds to dn‘s and (4n− 1)
terms are 0. In summation, observe that first n = 1, 2, . . . , k term contains t2k+1 and each one has
single contribution. So by letting 2k + 1 = 2n+ 2j + 1 ⇐⇒ j = k − n;

k∑
n=0

dn
22n

(2n)! (−1)k−n (k + n)!
(k − n)! (1.79)

is the coefficient of t2k+1. It follows;
k∑

n=0
dn

22n

(2n)! (−1)k−n (k + n)!
(k − n)! =

{
dk/2 if k is even.
0 if k is odd.

(1.80)

To show explicitly, lets write out k = 0, 1, 2, 3 cases and I will denote each equation as [0], [1], . . . , [k], . . . .

[0], d0 = d0

[1], d0 − d1
22

2!
2!
0! = 0

[2], d0 − d1
22

2!
3!
1! + d2

24

4!
4!
0! = d1

[3], d0 − d1
22

2!
4!
2! + d2

24

4!
5!
1! + d3

26

6!
6!
0! = 0 etc.

(1.81)

We want to transform those equations to simpler ones. As Gauss did, look at k2[k]− (k − 1)2[k − 2];

=
k∑

n=0
dn

22n

(2n)! (−1)k−nk2(k + n)(k + n− 1) · · · (k − n+ 1)

−
k−2∑
n=0

dn
22n

(2n)! (−1)k−n(k − 1)2(k + n− 2)(k + n− 3) · · · (k − n− 1)

(1.82)

We first manipulate up to k − 2 terms;
k−2∑
n=0

dn
22n

(2n)! (−1)k−n
{
k2(k + n) · · · (k − n+ 1)− (k − 1)2(k + n− 2) · · · (k − n− 1)

}
(1.83)

Consider only terms in curly brackets;

k2(k + n− 2) · · ·(k − n− 1)
[

(k + n)(k + n− 1)
(k − n− 1)(k − n) − 1

]
+ (2k − 1)(k + n− 2) · · · (k − n− 1)

= (2k − 1)
[
(k + n− 2) · · · (k − n+ 1)

(
k22n+ (k − n)(k − n− 1)

)]
= (2k − 1)

[
(k + n− 2) · · · (k − n+ 1)

(
(2n+ 1)k2 − (2n+ 1)k + n(n+ 1)

)]
(1.84)

Observe;
(k + n− 1)(k − n) = k2 − k − n(n− 1) (1.85)

And rewrite as;

(2k − 1)
[
(2n+ 1)(k + n− 1) · · · (k − n) + (k + n− 2) · · · (k − n+ 1)2n3] (1.86)

Turn back to (1.82) and split sum as;

(2k − 1)
k−2∑
n=0

(2n+ 1)dn
22n

(2n)! (−1)k−n(k + n− 1) · · · (k − n)

+ (2k − 1)
k−2∑
n=0

dn
22n

(2n)! (−1)k−n(k + n− 2) · · · (k − n+ 1)2n3

(1.87)
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Second summation can start from n = 1 or as;

(2k − 1)
k−2∑
n=0

(2n+ 1)dn
22n

(2n)! (−1)k−n(k + n− 1) · · · (k − n)

+ (2k − 1)
k−3∑
n=0

dn+1
22n+2

(2n+ 2)! (−1)k−n−1(k + n− 1) · · · (k − n)2(n+ 1)3

(1.88)

Leaving out n = k − 2 term;

(2k − 1)
k−3∑
n=0

22n

(2n+ 1)! (−1)k−n(k + n− 1) · · · (k − n)
(
(2n+ 1)2dn − (2n+ 2)2dn+1

)
(1.89)

Recall from (1.82) we left n = k−1, k terms and from (1.88) we left n = k−2. Collect them together;

dk22kk2 − (2k − 1)dk−122k−1k2 + (2k − 1)(2k − 3)2dk−222k−4 (1.90)

But this is exactly equal to sum of terms n = k − 2, k − 1 in (1.89)(one should do the calculation)
therefore;

k2[k]− (k − 1)2[k − 2];

(2k − 1)
k−1∑
n=0

22n

(2n+ 1)! (−1)k−n(k + n− 1) · · · (k − n)
[
(2n+ 1)2dn − (2n+ 2)2dn+1

] (1.91)

Last thing to find is what this sum equals to. There are 2 cases, if k is odd then it is equal to 0. If k
is even it is equal to;

k2dk/2 − (k − 1)2d(k−2)/2 (1.92)
Let k = 2m+ 2;

(2m+ 2)2dm+1 − (2m+ 1)2dm (1.93)
which is exactly in the form in summation of (1.91) and m < k. But we also know when k = 1, (1.91)
reads;

0 = d0 − 4d1 (1.94)
and hence it follows that (1.80) turns into;

0 = d0 − 4d1 = 9d1 − 16d2 = 25d2 − 36d3 = · · · = (2k + 1)2dk − (2k + 2)2dk+1 = · · · (1.95)

From that it is immediate;

dk =
(

(2k − 1)(2k − 3) · · · (2k + 1− 2j)
(2k)(2k − 2) · · · (2k + 2− 2j)

)2
dk−j (1.96)

We know d0 = 1;

dk =
(

(2k − 1)(2k − 3) · · · (1)
(2k)(2k − 2) · · · (2)

)2
= 1

42k−1

[
(2k − 1)!
k!(k − 1)!

]2
(1.97)

Recall from (1.25) we know series representation of complete elliptic integral of first kind which is
equal to (M(1 + k, 1− k))−1 hence proof is done.

2. AGM in Complex Variables

In this section we will define agm in complex variables but it cannot be generalized directly be-
cause geometric mean is multi-valued function for complex variables. We will well-define agm, show
convergence and at the end, state a main theorem for values of agm without proof.

For given a and b, there are uncountably many {an}∞n=0 and {bn}∞n=0. Also convergence is not
obvious for any of them. First we restrict a 6= ±b, a, b 6= 0. In those cases, convergence is clear and
not interesting. And define a way to distinguish between two possible choices for each bn+1.

Definition 2. Let a, b ∈ C∗ satisfy a 6= ±b. Then a square root b1 of ab is called the right choice if
|a1 − b1| ≤ |a1 + b1| and, when |a1 − b1| = |a1 + b1|, we also have Im(b1/a1) > 0.
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Lets see the case Im(b1/a1) = 0. Then b1/a1 = r ∈ R.
|a1 − b1| = |a1||1− r| 6= |a1||1 + r| = |a1 + b1| (2.1)

A natural way to define the agm as bn+1 always the right choice. However this is not the only
possibility. To be precise;

Definition 3. Let a, b ∈ C∗ satisfy a 6= ±b. A pair of sequences {an}∞n=0 and {bn}∞n=0 is called good
if bn+1 is the right choice for all but finitely many n ≥ 0.

It is expected to have this results after the definition:

Theorem 2. If a, b ∈ C∗ satisfy a 6= ±b, then any pair of sequences {an}∞n=0 and {bn}∞n=0 converge
to a common limit, and this common limit is non-zero if and only if {an}∞n=0 and {bn}∞n=0 are good
sequences.

Proof. Let 0 ≤ ang(a, b) ≤ π denote the unoriented angle between a and b. For right choice b1 we
have;

|a1 − b1| ≤
1
2 |a− b| (2.2)

ang(a1, b1) ≤ 1
2ang(a, b) (2.3)

From |a1 − b1| ≤ |a1 + b1| observe;

|a1 − b1|2 ≤ |a1 − b1||a1 + b1| =
1
4 |a− b|

2 (2.4)

Hence (2.2) is shown. Now let θ1 = ang(a1, b1) and θ = ang(a, b). From the law of cosines;
|a1 ± b1|2 = |a1|2 + |b1|2 ± 2|a1||b1| cos θ1 (2.5)

Rewrite |a1 − b1| ≤ |a1 + b1| from (2.5):
|a1|2 + |b1|2 − 2|a1||b1| cos θ1 ≤ |a1|2 + |b1|2 + 2|a1||b1| cos θ1

⇐⇒ θ1 ≤ π/2
(2.6)

Then observe;
ang(a1, b1) = θ1 ≤ π − θ1 = ang(a1,−b1) (2.7)

To compare this to θ, note that one of ±b1, say b′1, satisfies ang(a, b′1) = ang(b′1, b) = θ/2. This is
because;

Let a = r1e
iθ1 and b = r2e

iθ2

b1 =
{√

r1r2e
i(θ1+θ2)/2

√
r1r2e

i(θ1+θ2)/2+π)

(2.8)

And also noting that a1 is in between a and b,

ang(a1, b1) ≤ ang(a1, b
′
1) ≤ 1

2ang(a, b) (2.9)

�

Now suppose {an}∞n=0 and {bn}∞n=0 are not good sequences. Set Mn = max{|an|, |bn|}. Note that
Mn+1 ≤Mn. Recall definition of right choice and observe if bn+1 is not the right choice then;

|an+1 + bn+1| ≤ |an+1 − bn+1| ⇐⇒ |an+2| ≤
1
2 |an+1 − bn+1| (2.10)

Apply (2.2);
|an+2| ≤

1
4 |an − bn| ≤

1
2Mn (2.11)

We also have |bn+2| ≤Mn. It follows;

Mn+3 = max{2−1|an+2 + bn+2|, |
√
an+2bn+2|}

≤ max{2−1|(1/2)Mn +Mn|, |
√

(1/2)MnMn|}
≤ (3/4)Mn

(2.12)
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Since {an}∞n=0 and {bn}∞n=0 are not good sequences, (2.12) must occur infinitely often, proving that
limn→∞Mn = 0.

Now lets turn back to case {an}∞n=0 and {bn}∞n=0 are good sequences. Neglect first N terms where
N is sufficiently large such that bn+1 is always right choice for n ≥ N . Then say bn+1 is always right
choice for n ≥ 0. Also ang(a, b) < π follows from (2.3). Set θn = ang(an, bn). From (2.2) and (2.3);

|an − bn| ≤ 2−n|a− b|, θn ≤ 2−nθ (2.13)

Note that an − an+1 = (1/2)(an − bn), so by (2.13);

|an − an+1| ≤ 2n+1|a− b| (2.14)

If m > n;

|an − am| ≤
m−1∑
k=n
|ak − ak+1| ≤

(
m−1∑
k=n

2−(k+1)

)
|a− b| < 2−n|a− b| (2.15)

Thus {an}∞n=0 converges because it is a Cauchy sequence, and then by (2.13) limn→∞ an = limn→∞ bn.
Lastly, we need to show that common limit is nonzero. Let;

mn = min{|an|, |bn|} (2.16)

Observe that |bn+1| = |
√
anbn| ≥ mn. To relate |an+1| and mn, use the law of cosines;

(2|an+1|)2 = |an|2 + |bn|2 + 2|an||bn| cos θn
≥ 2m2

n(1 + cos θn) = 4m2
n cos2(θn/2)

(2.17)

Then it follows;
mn+1 = min{|an+1|, |bn+1|} ≥ min{mn cos(θn/2),mn}
mn+1 ≥ cos(θn/2)mn

mn+1 ≥
(2.18)

From (2.13) we can write(recall ang(a, b) < π);

mn+1 ≥ cos(θn/2)mn ≥ cos(θ/2n+1)mn

mn+1 ≥
n+1∏
k=1

cos(θ/2k)m0
(2.19)

Lets show well known equality;
sin θ = 2 cos(θ/2) sin(θ/2) = 4 cos(θ/2) cos(θ/4) sin(θ/4)

= · · · = 2n sin(θ/2n)
n∏
k=1

cos(θ/2k)
(2.20)

Therefore;

sin θ = lim
n→∞

2n sin(θ/2n)
n∏
k=1

cos(θ/2k) = θ

∞∏
k=1

cos(θ/2k) (2.21)

This proves;
sin θ
θ

=
∞∏
k=1

cos(θ/2k) (2.22)

From this rewrite (2.19);

mn ≥
sin θ
θ

m0 (2.23)

which proves that limn→∞ an = limn→∞ bn 6= 0.

Definition 4. Let a, b ∈ C∗ satisfy a 6= ±b. A nonzero complex number µ is a value of the arithmetic-
geometric mean M(a,b) of a and b if there are good sequences {an}∞n=0 and {bn}∞n=0 such that

µ = lim
n→∞

an = lim
n→∞

bn (2.24)
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Hence M(a, b) is a multiple valued function of a and b and there are countable number of values.
Note that if all choices are good choice for bn+1 then the common limit is called simplest value of
M(a, b). Which is also equivalent to definition in ysection 1 when a, b ∈ R+.

3. Theta Series Solution to the AGM

The basic theta functions are defined for |q| < 1 by;

θ2(q) ≡
∞∑

n=−∞
q(n+1/2)2

, θ2(0) = 0 (3.1)

θ3(q) ≡
∞∑

n=−∞
qn

2
, θ3(0) = 1 (3.2)

θ4(q) ≡
∞∑

n=−∞
(−1)nqn

2
, θ4(0) = 1 (3.3)

Observe θ4(q) = θ3(−q) and also;

θ3(q) + θ4(q) = 2
∑
n even

qn
2

= 2
∞∑

n=−∞
q4n2

= 2θ3(q4) (3.4)

and

θ3(q)− θ4(q) = 2
∑
n odd

qn
2

= 2
∞∑

n=−∞
q4(n+1/2)2

= 2θ2(q4) (3.5)

Represent;

θ2
3(q) =

∞∑
n=0

r2(n)qn θ2
4(q) =

∞∑
n=0

(−1)nr2(n)qn (3.6)

where r2(n) counts the number of ways of writing n = j2 + k2 and distinguish sign and permutation.
Ex. r2(5) = 8. Set r2(0) = 1. For θ2

4(q), examine cases when n is even and odd and what it implies
about its representation as j2 + k2. It is also useful to represent θ2

3(q) and θ2
4(q)(or any other) as

summation over even and odd integers seperately;

θ2
3(q) =

∞∑
n≥0

n even

r2(n)qn +
∞∑
n≥0

n odd

r2(n)qn =
∞∑
n=0

r2(2n)q2n +
∞∑
n=0

r(2n+ 1)q2n+1

θ2
4(q) =

∞∑
n≥0

n even

r2(n)qn −
∞∑
n≥0

n odd

r2(n)qn =
∞∑
n=0

r2(2n)q2n −
∞∑
n=0

r(2n+ 1)q2n+1
(3.7)

Now to observe r2(2n) = r2(n), consider one such representation of n as n = j2 + k2;

2n = 2j2 + 2k2 = (j + k)2 + (j − k)2 (3.8)

So any representation of n is also representing 2n in the form (3.8). Avoidable but letting 2n = a2 +b2,
by writing a = j + k, b = j − k one can solve it uniquely to determine j and k. This leds to;

θ2
3(q) + θ2

4(q) = 2
∞∑
n=0

r2(2n)q2n = 2θ2
3(q2) (3.9)

Now, (3.4) and (3.9) allow us to solve θ3(q)θ4(q);

θ3(q)θ4(q) = 1
2 [θ3(q) + θ4(q)]2 − 1

2 [θ2
3(q) + θ2

4(q)]

= 2θ2
3(q4)− θ2

3(q2) = θ2
4(q2)

(3.10)
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To observe last equality;

2θ2
3(q4)− θ2

3(q2) = 2
∞∑
n=0

r2(n)q4n −
∞∑
n=0

r2(2n)q4n −
∞∑
n≥0

n odd

r2(n)q2n

=
∞∑
n≥0

n even

r2(n)q2n −
∞∑
n≥0

n odd

r2(n)q2n = θ2
4(q2)

(3.11)

Thus;
θ2

3(q) + θ2
4(q)

2 = θ2
3(q2)√

θ2
3(q)θ2

4(q) = θ2
4(q2)

(3.12)

which bears an obvious resemblance to the AGM. Similarly;

θ2
3(q)− θ2

3(q2) =
∞∑
n=0

r2(2n)q2n +
∞∑
n≥0

n odd

r2(n)qn −
∞∑
n=0

r2(n)q2n =
∞∑
n≥0

n odd

r2(n)qn (3.13)

Last term can be written as;
∞∑
n≥0

n odd

r(n)qn =
∞∑

k,m=−∞
k+m odd

qm
2+k2

(3.14)

k + m odd is equivalent to k + m = 2i + 1 hence let k = i − j and m = i + j + 1. As a side note,
summation over i will cover all odd integers and summation over j for some i covers all possible
representations of the same k +m. More formally;

=
∞∑

i=−∞

 ∞∑
k,m=−∞
k+m=2i+1

qm
2+k2

 =
∞∑

i=−∞

∞∑
j=−∞

q(i+j+1)2+(i−j)2
=

∞∑
i,j=−∞

(q2)(i+1/2)2+(j+1/2)2
= θ2

2(q2)

(3.15)
Hence;

θ2
3(q2) + θ2

2(q2) = θ2
3(q) (3.16)

Combine this with first line of (3.12);

θ2
3(q2)− θ2

2(q2) = θ2
4(q) (3.17)

Last two and second line of (3.12) yields Jacobi’s Identity as follows;

4θ4
2(q2) = θ4

3(q) + θ4
4(q)− 2θ2

3(q)θ2
4(q) (3.18)

But;
θ4

3(q) + θ4
4(q) = 2θ4

3(q2) + 2θ4
2(q2) (3.19)

Combine to get;
2θ4

2(q2) = 2θ4
3(q2)− 2θ4

4(q2) (3.20)
Rewrite in the form of Jacobi’s Identity;

θ4
3(q) = θ4

2(q) + θ4
4(q) (3.21)

Now set k ≡ k(q) ≡ θ2
2(q)/θ2

3(q). Then (3.21) shows k′ =
√

1− k2 = θ2
4(q)/θ2

3(q). Return to (3.12)
and set an = θ2

3(q2n) and bn = θ2
4(q2n). Observe an and bn satisfy the AGM iteration. Moreover,

because we know the common limit as n→∞;

M(θ2
3(q), θ2

4(q)) = 1 (3.22)

Stating our observations as Theorem;
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Theorem 3. Let 0 < k < 1 be given. The AGM satisfies;
M(1, k′) = θ−2

3 (q) for k′ = θ2
4(q)/θ2

3(q) (3.23)
where q is the unique solution in (0, 1) to k = θ2

2(q)/θ2
3(q). In particular;

K(k) = π

2 θ
2
3(q) (3.24)

3.1. Rederive Jacobi’s Identity. First of all, establish a formal identity for f : Z× Z→ R;
∞∑

m,n=−∞
f(m,n) =

∞∑
l,k=−∞

f(l + k, l − k) +
∞∑

l,k=−∞
f(l + k, l − k − 1) (3.25)

Proof. Fix any integer pair (a, b). Observe that if both of them have the same parity then;

l = a+ b

2 , k = a− b
2 (3.26)

has integer solution. While if their parities are different;

l = a+ b+ 1
2 , k = a− b− 1

2 (3.27)

has integer solution. Therefore observe that summations are over disjoint sets and they cover Z×Z. �

Now apply (3.25) to qm2+n2 ;
∞∑

m,n=−∞
qm

2+n2
=

∞∑
l,k=−∞

q(l+k)2+(l−k)2
+

∞∑
l,k=−∞

q(l+k)2+(l−k−1)2

=
∞∑

l,k=−∞
q2(l2+k2) +

∞∑
l,k=−∞

q2{(l− 1
2 )2+(k+ 1

2 )2}
(3.28)

This is (3.16). Similarly apply (3.25) to (−1)m+nqm
2+n2 ;

∞∑
m,n=−∞

(−1)m+nqm
2+n2

=
∞∑

l,k=−∞
q(l+k)2+(l−k)2

−
∞∑

l,k=−∞
q(l+k)2+(l−k−1)2

=
∞∑

l,k=−∞
q2(l2+k2) −

∞∑
l,k=−∞

q2{(l− 1
2 )2+(k+ 1

2 )2}
(3.29)

This is (3.17). Lastly apply it to (−1)mqm2+n2 ;
∞∑

m,n=−∞
(−1)mqm

2+n2
=

∞∑
l,k=−∞

(−1)l+kq2(l2+k2) +
∞∑

l,k=−∞
(−1)l+kq(l+k)2+(l−k−1)2

(3.30)

Notice that power of q at the last sum is symmetric under k → −k−1, but both appear with opposite
sign, therefore it is 0 and observing that it is the second line of (3.12).

Note 2. By knowing (3.16) and (3.17), it is straightforward to get the first line of (3.12).

Note 3. Jacobi’s Identity follows exactly as discussed after (3.17) and hence by (3.25) we achived all
required identities to prove (3).

3.2. The Poisson Summation Formula.

Theorem 4. Let f be a nonnegative function such that the integral
∫∞
−∞ f exists as an improper

Riemann Integral. Assume also that f increases on (−∞, 0] and decreases on [0,∞). Then we have;
∞∑

m=−∞

f(m+) + f(m−)
2 =

∞∑
n=−∞

∫ ∞
−∞

f(t)e−2πintdt (3.31)

each series being absolutely convergent.
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Proof. Proof makes use of the Fourier expansion of the function F defined by the series

F (x) =
∞∑

m=−∞
f(m+ x) (3.32)

First we show that this series converges absolutely for each real x and the convergence is uniform on
the interval [0, 1].

We will use Weierstrass M-test, which is stated as;

Theorem 5. Let {Mn} be a sequence of nonnegative numbers such that

|fn(x)| ≤Mn for n = 1, 2, . . . and for every x in S. (3.33)

Then
∑
fn(x) converges uniformly on S if

∑
Mn converges.

Let fn(x) ≡ f(n+ x) and for x ≥ 0, n > 0;
|f0(x)| ≤ f(0) ≡M0

|fn(x)| ≤ f(n) ≤
∫ n

n−1
f(t)dt ≡Mn

(3.34)

We assumed
∑∞
n=0 Mn converges hence by Theorem (5)

∑∞
n=0 f(x+n) converges uniformly on [0,∞).

Similarly for x ≤ 1, n < −1;
|f−1(x)| ≤ f(0) ≡M−1

|fn(x)| ≤ f(n+ 1) ≤
∫ n+2

n+1
f(t)dt ≡Mn

(3.35)

Now
∑−∞
n=−1 Mn converges hence

∑−∞
n=−1 f(x + n) converges uniformly on (−∞, 1]. Therefore the

series in (3.32) converges for all x and the convergence is uniform on the intersection [0, 1].
Observe that F is periodic with period 1. In fact, we have F (x+ 1) =

∑∞
m=−∞ f(m+ x+ 1), and

this series is merely a rearrangement of that in (3.32). Since all its terms are nonnegative, it converges
to the same sum. Hence;

F (x+ 1) = F (x) (3.36)
Observe if 0 ≤ x ≤ 1

2 , then f(m+x) is a decreasing function of x if m ≥ 0, and an increasing function
of x if m < 0. Therefore we have;

F (x) =
∞∑
m=0

f(m+ x)−
−1∑

m=−∞
{−f(m+ x)} (3.37)

so F is the difference of two decreasing functions. Similarly, if − 1
2 ≤ x ≤ 0, then f(m+x) is decreasing

function of x if m ≥ 1 and an increasing function of x if m < 1 and can be written similar to (3.37).
Therefore F is of bounded variation on [− 1

2 ,
1
2 ]. By periodicity, F is of bounded variation on every

compact interval.
Now consider the Fourier series(in exponential form) generated by F , say;

F (x) ∼
∞∑

n=−∞
αne

2πinx (3.38)

Since F is of bounded variation on [0, 1] it is Riemann-integrable on [0, 1] and the Fourier coefficients
are given by the formula;

αn =
∫ 1

0
F (x)e−2πinxdx (3.39)

Also, since F is of bounded variation on every compact interval, Jordan’s test shows that the Fourier
series converges for every x and that

F (x+) + F (x−)
2 =

∞∑
n=−∞

αne
2πinx (3.40)
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By using (3.32), integrate (3.39) term by term.(Justified by Uniform Convergence).

αn =
∞∑

m=−∞

∫ 1

0
f(m+ x)e−2πinxdx (3.41)

Make change of variable t = m+ x;

αn =
∞∑

m=−∞

∫ m+1

m

f(t)e−2πintdt =
∫ ∞
−∞

f(t)e−2πintdt (3.42)

Using this in (3.40);

F (x+) + F (x−)
2 =

∞∑
n=−∞

{∫ ∞
−∞

f(t)e−2πintdt

}
e2πinx (3.43)

Which is The Poisson Summation Formula when x = 0. �

Example 1. Apply (3.43) to;

f(x) :=
{
e−yx x ≥ 0,
0 x < 0,

y > 0. (3.44)

The right-hand side becomes;
∞∑

n=−∞

e2πinx

y + 2πin = 1
y

+
∞∑

n=−∞
n 6=0

e2πinx(y − 2πin)
y2 + (2πn)2

= 1
y

+ 2
∞∑
n=1

y cos(2πnx) + (2πn) sin(2πnx)
y2 + (2πn)2

(3.45)

and for left-hand side, note that F is not continuous at x ∈ Z;∑
n>−x

e−y(n+x) +
{

1
2 x ∈ Z
0 otherwise

(3.46)

If x := 0;
1
2 + 1

ey − 1 = 1
y

+ 2y
∞∑
n=1

1
y2 + (2πn)2 (3.47)

Recall definition of Hyperbolic cotangent;

coth x = ex + e−x

ex − e−x
= 1 + 2

e2x − 1 (3.48)

hence;
1
2 coth

(x
2

)
= 1

2 + 1
ex − 1 (3.49)

Or;
1
2 coth (πy) = 1

2 + 1
e2πy − 1

= 1
2πy + y

π

∞∑
n=1

1
y2 + n2

(3.50)

Therefore we obtain classical formula for coth;

π coth(πx) = 1
x

+ 2x
∞∑
n=1

1
x2 + n2 (3.51)

If x := 1
2 , notice that on right-hand side summation becomes alternating and left-hand side becomes;

1
ey/2 − e−y/2 = 1

2 csch
(y

2

)
(3.52)
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and exact same change of variable for coth can be applied to get;

π csch(πx) = 1
x

+ 2x
∞∑
n=1

(−1)n

x2 + n2 (3.53)

Example 2. Now apply (3.43) to;

f(x) := e−sx
2π s > 0. (3.54)

Then;
∞∑

n=−∞
e−s(n+x)2π =

∞∑
k=−∞

e2πikx
∫ ∞
−∞

e−st
2π−2πiktdt (3.55)

Integral on the right is;

2
∫ ∞

0
e−sπt

2
cos(2πkt)dt = 2

∫ ∞
0

e−x
2

cos
(

2
√
π

s
kx

)
dx√
sπ

= 2√
sπ
F

(√
π

s
k

) (3.56)

where;

F (y) :=
∫ ∞

0
e−x

2
cos(2xy)dx =

√
π

2 e−y
2

(3.57)

For the last equality2;

Ḟ (y) = −
∫ ∞

0
2xe−x

2
sin(2xy)dx

= −2y
∫ ∞

0
e−x

2
cos(2xy)dx

(3.58)

Therefore F satisfies; {
Ḟ (y) + 2yF (y) = 0
F (0) =

√
π

2
(3.59)

Thus we get;
∞∑

n=−∞
e−s(n+x)2π = 1√

s

∞∑
k=−∞

e2πikxe−
πk2
s (3.60)

This is a general form of the theta transformation formula which holds for re(s) > 0. For x := 0 (3.60)
reduces to; √

sθ3(e−sπ) = θ3(e−π/s) (3.61)

3.3. Poisson Summation and The AGM. Recall setting x := 0 gives (3.61) while x := 1
2 gives(and

setting s = s−1); √
sθ4(e−sπ) = θ2(e−π/s)
√
sθ2(e−sπ) = θ4(e−π/s)

(3.62)

Recall Theorem (3) and divide above equations to get;

k(e−sπ) = k′(e−π/s) (3.63)
Now from the theorem (3), setting q := e−sπ;

M(1, k) = θ−2
3 (e−π/s) (3.64)

Thus;

π
M(1, k′)
M(1, k) = π

θ2
3(e−π/s)
θ2

3(e−sπ) = πs = − log q (3.65)

Conclusion of this discussion can be given as a fundamental theorem as follows;

2Justified by continuity of integrand and its derivative
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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1.0

k= θ22 /θ23
√1− k2 = θ24 /θ23
4√q

Theorem 6. For all k in (0, 1),

π
M(1, k′)
M(1, k) = − log q, k = θ2

2(q)
θ2

3(q) , k′ = θ2
4(q)
θ2

3(q) (3.66)

and so

π
K ′(k)
K(k) = − log q (3.67)

Note 4. Second equation is often written as q = e−πK
′/K and q is called the nome associated with

k. In principle it solves the inversion problem for q in terms of k.

Lets observe that k = θ2
2(q)/θ2

3(q) = 4√qf(q) where f(q) is analytic and f(0) = 1.

θ2
2(q)
θ2

3(q) =

[
2
∑∞
n=0 q

(n+ 1
2 )2
]2

[1 + 2
∑∞
n=1 q

n2 ]2
= 4√q

[ ∑∞
n=0 q

n2+n

1 + 2
∑∞
n=1 q

n2

]2

(3.68)

For asymptotic of f(q) as q → 0,

f(q) =
[

1 +O(q2)
1 +O(q)

]2

=
[
(1 +O(q2))(1 +O(q))

]2 = 1 +O(q) (3.69)

Hence k = 4√q +O(q). From this and Theorem (6), since M(1, k′)→ 1 as k → 0+;

lim
k→0+

[
π

2M(1, k) − log
(

4
k

)]
= 0 (3.70)

Now consider the AGM iteration with an(q) := θ2
3(q2n)/θ2

3(q) and bn(q) := θ2
4(q2n)/θ2

3(q). Notice this
is equivalent to considering AGM iteration with a0 := 1 and b0 := k′. We know bn/an = k′(q2n) and
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cn/an = k(q2n) but latter needs a verification as follows;

cn
an

=
c2
n−1
4a2
n

= (an−2 − bn−2)2

16a2
n

=

(
θ2

3(q2n−2)− θ2
4(q2n−2)

)2

16θ4
3(q2n)

= θ2
2(q2n)
θ2

3(q2n) = k(q2n)

(3.71)

Above we used (3.4) and (3.5). Also it can be shown;

log
(

4
k(q2n)

)
= −2n−1 log q +O(q2n − q2n−1

) (3.72)

Which leads to;

lim
n→∞

2−n log
(

4an
cn

)
= π

2
M(1, k′)
M(1, k) (3.73)

From (3.65) and (3.73);

lim
n→∞

21−n log
(

4an
cn

)
= πs (3.74)

Define;

πn := 21−n d

ds
log
(
an
cn

)
→ π (3.75)

Now state a lemma due to Gauss;

Lemma 1. 2−nb−2
n d log(an/cn) is independent of n.

Using lemma;

πn = b2
nπ0

b2
0

while π0 = −2
k

dk

ds
(3.76)

Recall (1.24) and since bn tends to M(1, k′);
dk

ds
= −π2

kk′2

M(1, k′)2 = − 2
π
kk′2K2 (3.77)

and since q = e−πs;
dk

dq
= 1

2q
kk′2

M(1, k′)2 = 2kk′2K2

qπ2 (3.78)

Rewriting k, k′ and K in (3.77) in theta terms produces;
θ̇3

θ3
− θ̇2

θ2
= π

4 θ
4
4 (w.r.t.s) (3.79)

Differentiation of (3.61) and (3.62) yields;

s2θ̇3(e−πs) + s

2θ3(e−πs) = −s−1/2θ̇3(e−π/s)

s2θ̇4(e−πs) + s

2θ4(e−πs) = −s−1/2θ̇2(e−π/s)
(3.80)

Again using (3.61) and (3.62);

s
θ̇3

θ3
(e−πs) + s−1 θ̇3

θ3
(e−π/s) = −1

2

s
θ̇4

θ4
(e−πs) + s−1 θ̇2

θ2
(e−π/s) = −1

2

(3.81)

Substract to get;

s2
(
θ̇3

θ3
− θ̇2

θ2

)
(e−πs) =

(
θ̇4

θ4
− θ̇3

θ3

)
(e−π/s) (3.82)

Notice left-hand side is equivalent to (3.79);(
θ̇4

θ4
− θ̇3

θ3

)
= π

4 θ
4
2 (3.83)
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Finally, add (3.83) and (3.79)(and use Jacobi’s Identity);(
θ̇4

θ4
− θ̇2

θ2

)
= π

4 θ
4
3 (3.84)

Now we are ready to express E in terms of theta functions. Recall (1.41) and use (3.77);

E −K = kk′2
dK

dk
− k2K = − π

K

[
1

2K
dK

ds
+ k2K2

π

]
(3.85)

Express last expression in terms of theta functions;

E −K = − π
K

[
θ̇3

θ3
+ π

4 θ
4
2

]
(3.86)

Hence;

E = K − π

K

θ̇4

θ4
(3.87)

Similarly(Using (3.63));

E′ = K ′ − π

K ′
θ̇4

θ4
(e−π/s) (3.88)

Now from (3.81) and noting K ′/K = s (from (6));

θ̇4

θ4
(e−π/s) = −K

′

2K −
K ′2

K2
θ̇2

θ2
(3.89)

Now rewrite (3.84) in terms of K;
θ̇2

θ2
= θ̇4

θ4
− K2

π
(3.90)

Combining all will show;

E′ = π

2K + πK ′

K2
θ̇4

θ4
(3.91)

4. The Derived Iteration and Some Convergence Results

Recall (1.41) and put k = 1/
√

2 to get;
dK

dk
(1/
√

2) = 2
√

2
[
E(1/

√
2)− 1

2K(1/
√

2)
]

(4.1)

It is straightforward to evaluate it from (A.8) and;

K̇(1/
√

2) = 23/2π3/2

Γ2(1/4) (4.2)

Observing this our motivation is
√

2K(1/
√

2)K̇(1/
√

2) = π. Now consider the AGM with a0 := 1 and
b0 := k. an and bn viewed as functions of k converge uniformly and analytically to M(1, k). It follows
that the derived iterations ȧn and ḃn converge to Ṁ(1, k). Since M(1, k) = π/2K ′(k);

Ṁ(1, k) = π

2
d

dk

(
1

K(k′)

)
= π

2
d

dk′

(
1

K(k′)

)
dk′

dk
= π

2
k

k′
K̇

K2 (k′) (4.3)

Or equivalently;

K̇(k′) = π

2
k′

k

Ṁ(1, k)
M2(1, k) (4.4)

Now the derived iteration is

ȧn+1 = ȧn + ḃn
2 ḃn+1 =

ȧn
√
bn/an + ḃn

√
an/bn

2 (4.5)

For convergencence first observe;

ḃn+1 ≥ ȧn+1 ⇐⇒ ȧn

(
1−

√
bn/an

)
≤ ḃn

(√
an/bn − 1

)
⇐⇒ ḃn ≥ ȧn

√
bn
an

(4.6)
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Since ȧ0 = 0, it is always true that ḃn ≥ ȧn. It is left to show ȧn+1 ≥ ȧn and ḃn+1 ≤ ḃn, and former is
straightforward but latter requires an attention. But first we consider the Legendre forms xn := an/bn
and yn := ḃn/ȧn. Then

xn+1 =
√
xn + 1/√xn

2 yn+1 =
yn
√
xn + 1/√xn
yn + 1 (4.7)

where x0 := k−1, y1 := √x0 and y0 is undefined. First observation is;

yn+1 ≥ xn+1 ⇐⇒
yn
√
xn + 1/√xn
yn + 1 ≥

√
xn + 1/√xn

2 ⇐⇒ xn ≥ 1 (4.8)

where we used xn, yn ≥ 1. Also;
√
xn ≥ yn+1 ⇐⇒

√
xn −

1
√
xn
≥ 0 (4.9)

Collect together as;
1 ≤ xn+1 ≤ yn+1 ≤

√
xn ≤ xn (4.10)

Moreover;

xn+1 − 1 = (xn − 1)2

2√xn(1 +√xn)2 ≤
1
8(xn − 1)2 (4.11)

and
yn+1 − 1 = (yn − 1)(xn − 1)

(yn + 1)(√xn + 1) + 2(xn+1 − 1)
yn + 1

≤ 1
4(yn − 1)2 + 1

8(xn − 1)2 ≤ 3
8(yn − 1)2

(4.12)

This establishes the quadratic convergence of xn and yn to 1. Now it is apparent that;

π = 2
√

2M
3(1, 1/

√
2)

Ṁ(1, 1/
√

2)
(4.13)

and since both M and Ṁ are quadratically computable, so is π.
In the next section, we turn this identity into an explicit algorithm but before lets turn our attention

back to ȧn, and ḃn. We left to show ḃn decreases.

ḃn+1 ≤ ḃn ⇐⇒ ȧn

√
an
bn

+ ḃn

√
bn
an
≤ 2ḃn (4.14)

or in Legendre Form;

ḃn+1 ≤ ḃn ⇐⇒
1
yn

1
√
xn

+
√
xn ≤ 2 ⇐= 1

xn
+
√
xn ≤ 2 (4.15)

We know that xn → 1 therefore write xn = 1 + εn where εn → 0. Then;
1

1 + εn
+
√

1 + εn = 2− εn
2 +O(ε2n) ≤ 2 (4.16)

Now it is apparent that ḃn decreases, at least eventually.

5. Algorithm for π

We will use derived AGM and provide estimates on convergence.

Algorithm 1. Let x0 :=
√

2, π0 := 2 +
√

2 and y1 := 21/4. Define

xn+1 := 1
2

(
√
xn + 1

√
xn

)
n ≥ 0(i)

yn+1 := 1
2
yn
√
xn + 1/√xn
yn + 1 n ≥ 1(ii)

πn := πn−1
xn + 1
yn + 1 n ≥ 1(iii)



24 MELIH ISERI

Then πn decreases monotonically to π. Moreover, for n ≥ 0;
3
2(yn+1 − xn+1) ≤ πn − π ≤

7
4(yn+1 − xn+1) (5.4)

πn+1 − π ≤
1
10(πn − π)2 (5.5)

and for n ≥ 2,
πn − π ≤ 10−2n+1

(5.6)

Proof. Define πn as;

πn := 2
√

2
b2
n+1an+1

ȧn+1
(5.7)

where a0 := 1, b0 := 1/
√

2 and hence π0 := 2 +
√

2. Then by (4.13) πn → π. Notice;
πn
πn−1

= (bn+1/bn)2(an+1/an)
ȧn+1/ȧn

= 1 + xn
1 + yn

(5.8)

Since yn ≥ xn ≥ 1, it is obvious that πn decreases. Now observe;

yn+1 − xn+1 = (yn − 1)(xn − 1)
2√xn(1 + yn) ≤ 1

8(yn − xn)2 (5.9)

For convenience define, ỹ := yn − 1, x̃ := xn − 1;
ỹx̃

2
√

1 + x̃(2 + ỹ)
≤ 1

8(ỹ − x̃)2 ⇐= 2ỹx̃ ≤ (ỹ − x̃)2

⇐⇒ 0 ≤ ỹ2 − 4ỹx̃+ x̃2

⇐⇒ 0 ≤ 1− 4 x̃
ỹ

+ x̃2

ỹ2

(5.10)

hence (5.9) is true provided;
xn − 1
yn − 1 < 2−

√
3 (5.11)

It is also necessary to show that (5.11) is true but first note that;
1 + ynxn −

√
xn(1 + yn) ≥ (

√
xn − 1)(yn − 1)

⇐⇒ ynxn − 2yn
√
xn + yn ≥ 0 ⇐⇒ (

√
xn − 1)2 ≥ 0

(5.12)

Back to (5.11);
xn+1 − 1
yn+1 − 1

(√
xn√
xn

)
=
(

1
2

)
(√xn − 1)2(1 + yn)

1 + ynxn −
√
xn(1 + yn)

≤
(

1
2

)
(√xn − 1)2(1 + yn)(√xn + 1)
(√xn − 1)(yn − 1)(√xn + 1)

≤
(

1 + yn
4

)
xn − 1
yn − 1

(5.13)

On noting that (x1 − 1)/(y1 − 1) ' 0.08 ≤ 0.26, (5.11) is always true.
Next;

πn − πn+1 = πn
yn+1 − xn+1

yn+1 + 1 ≤ πn
2 (yn+1 − xn+1) (5.14)

Therefore;

πn − π =
∞∑
k=0

πn+k − πn+k+1 ≤
1
2

∞∑
k=0

πn+k(yn+k+1 − xn+k+1)

≤ πn
2

∞∑
k=1

(yn+k − xn+k)
(5.15)
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To make steps clear, continue from last expression;

πn
2

∞∑
k=1

(yn+k − xn+k) ≤ πn
2

∞∑
k=1

[
k−2∏
i=0

1
82i

]
(yn+1 − xn+1)2k−1

≤ πn
2

{
(yn+1 − xn+1) +

∞∑
k=2

1
82k−2 (yn+1 − xn+1)2k−1

}

≤ πn
2

{
(yn+1 − xn+1) +

∞∑
k=2

1
8k−1 (yn+1 − xn+1)k

}

= πn
2 (yn+1 − xn+1)

∞∑
k=0

1
8k (yn+1 − xn+1)k

(5.16)

As a result we get;

πn − π ≤
πn
2

yn+1 − xn+1

1− 1
8 (yn+1 − xn+1)

(5.17)

From (5.14) and since πn monotone decreases;

πn − π ≥ πn − πn+1 ≥ π
yn+1 − xn+1

1 + yn+1
(5.18)

This gives the result;

3
2(yn+1 − xn+1) ≤ πn − π ≤

7
4(yn+1 − xn+1) (5.19)

where we note π0/2(1− 1
8 (y1 − x1)) ' 1.745 < 1.75. With (5.9);

πn+1 − π ≤
7
4(yn+2 − xn+2) ≤ 7

32(yn+1 − xn+1)2 ≤ 1
10(πn − π)2 (5.20)

Lastly;

πn − π ≤ 10−
(∑k−1

i=0
2i
)
(πn−k − π)2k = 10−2k+1(πn−k − π)2k ≤ 10−2k+3

(5.21)

Last inequality is true for k = n− 2 on checking;

108(π2 − π) ' 0.737 < 1 (5.22)

Notice for this calculation we start with k ≥ 0 hence (5.6) follows for n ≥ 2. �

The first eleven iterations give 1, 3, 8, 19, 40, 83, 170, 345, 694, 1393, 2789 digits of π.
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Because it is expected to be seen, here you have first 4920 digits of π;
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066

470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831

652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903

600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527

248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051

320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219

608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850

352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805

321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138

912497217752834791315155748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240

128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521

047521620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412199245863150

302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074

265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494

684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843

838279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863067442786220391949

450471237137869609563643719172874677646575739624138908658326459958133904780275900994657640789512694683983525957098258226

205224894077267194782684826014769909026401363944374553050682034962524517493996514314298091906592509372216964615157098583

874105978859597729754989301617539284681382686838689427741559918559252459539594310499725246808459872736446958486538367362

226260991246080512438843904512441365497627807977156914359977001296160894416948685558484063534220722258284886481584560285

060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125150760694794510965

960940252288797108931456691368672287489405601015033086179286809208747609178249385890097149096759852613655497818931297848

216829989487226588048575640142704775551323796414515237462343645428584447952658678210511413547357395231134271661021359695

362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910484

810053706146806749192781911979399520614196634287544406437451237181921799983910159195618146751426912397489409071864942319

615679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215030680384477345492

026054146659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714

591028970641401109712062804390397595156771577004203378699360072305587631763594218731251471205329281918261861258673215791

984148488291644706095752706957220917567116722910981690915280173506712748583222871835209353965725121083579151369882091444

210067510334671103141267111369908658516398315019701651511685171437657618351556508849099898599823873455283316355076479185

358932261854896321329330898570642046752590709154814165498594616371802709819943099244889575712828905923233260972997120844

335732654893823911932597463667305836041428138830320382490375898524374417029132765618093773444030707469211201913020330380

197621101100449293215160842444859637669838952286847831235526582131449576857262433441893039686426243410773226978028073189

154411010446823252716201052652272111660396665573092547110557853763466820653109896526918620564769312570586356620185581007

293606598764861179104533488503461136576867532494416680396265797877185560845529654126654085306143444318586769751456614068

007002378776591344017127494704205622305389945613140711270004078547332699390814546646458807972708266830634328587856983052

358089330657574067954571637752542021149557615814002501262285941302164715509792592309907965473761255176567513575178296664

547791745011299614890304639947132962107340437518957359614589019389713111790429782856475032031986915140287080859904801094

121472213179476477726224142548545403321571853061422881375850430633217518297986622371721591607716692547487389866549494501

146540628433663937900397692656721463853067360965712091807638327166416274888800786925602902284721040317211860820419000422

966171196377921337575114959501566049631862947265473642523081770367515906735023507283540567040386743513622224771589150495

from π11 of Algorithm 1.

Appendix A. Proofs

Some of the proofs are given as appendix.

Lemma. 2−nb−2
n d log(an/cn) is independent of n.

Proof. First observe that;

d log
(
a+ b

a− b

)
= 2adb− bda

a2 − b2 = 2a2

a2 − b2d
(
b

a

)
(A.1)

Call expression in lemma as s(n) and because cn is defined from an−1 and bn−1 express s(n) as;

s(n) = 2−n(an−1bn−1)−1d log
(
an−1 + bn−1

an−1 − bn−1

)
(A.2)
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We want to show s(n) = s(n+ 1);

s(n+ 1) = 2−n(an−1 + bn−1)−1(an−1bn−1)−1/2d log
(√

an−1 +
√
bn−1

√
an−1 −

√
bn−1

)2

(A.3)

Apply (A.1) to both s(n) and s(n+ 1) to get;

s(n) = 2−n(an−1bn−1)−1 2a2
n−1

a2
n−1 − b2

n−1
d
(
bn−1

an−1

)

s(n+ 1) = 2−n(an−1 + bn−1)−1(an−1bn−1)−1/2 an−1

an−1 − bn−1
d
(√

bn−1

an−1

) (A.4)

It is left to show equality algebraicly. �

Definition 5.
Γ(x) :=

∫ ∞
0

e−ttx−1dt re(x) > 0

β(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt re(x), re(y) > 0

(A.5)

By above definitions, Γ satisfies the functional relation

Γ(x)Γ(1− x) = π

sin(πx) (A.6)

and relationship between Γ and β is

β(x, y) = Γ(x)Γ(y)
Γ(x+ y) (A.7)

Theorem.
K

(
1√
2

)
=

Γ2( 1
4 )

4
√
π

and E

(
1√
2

)
=

4Γ2( 3
4 ) + Γ2( 1

4 )
8
√
π

(A.8)

Proof. From definition of K(k)(1.16);

K

(
1√
2

)
=
√

2
∫ 1

0

dt√
(1− t2)(2− t2)

(A.9)

The change of variables;

x2 := t2/(2− t2) and dx = 2dt
(2− t2)3/2 and 1− x4 = 4 (1− t2)

(2− t2)2 (A.10)

Organize terms as;
√

2
∫ 1

0

dt√
(1− t2)(2− t2)

=
√

2
∫ 1

0

2dt√
4(1− t2)/(2− t2)2(2− t2)3/2

(A.11)

then it is immediate to write;

K

(
1√
2

)
=
√

2
∫ 1

0

dx√
1− x4

(A.12)

Now simple change of variables with u := x4 results;

K

(
1√
2

)
=
√

2
4

∫ 1

0
u1/4−1(1− u)1/2−1du =

√
2

4 β

(
1
4 ,

1
2

)
(A.13)

Now start with
E

(
1√
2

)
= 1√

2

∫ 1

0

√
2− t2√
1− t2

dt (A.14)

Then change of variable as;

x :=
√

1− t2 and dx = −t√
1− t2

dt

1− x4 = t2(2− t2) and 1 + x2 = 2− t2
(A.15)
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Organize terms as;
1√
2

∫ 1

0

√
2− t2√
1− t2

dt = 1√
2

∫ 0

1

2− t2√
t2(2− t2)

−tdt√
1− t2

(A.16)

Then it is immediate again to write;

E

(
1√
2

)
= 1√

2

∫ 1

0

x2
√

1− x4
dx+ 1√

2

∫ 1

0

dx√
1− x4

(A.17)

Again u := x4 gives;

E

(
1√
2

)
= 1

4
√

2

∫ 1

0
u3/4−1(1− u)1/2−1du+ 1

4
√

2

∫ 1

0
u1/4−1(1− u)1/2−1du

= 1
4
√

2
β

(
3
4 ,

1
2

)
+ 1

4
√

2
β

(
1
4 ,

1
2

) (A.18)

Rest of the proof is to use given relations and properties for β and Γ for both K and E. �

Below theorem is from Principles of Mathematical Analysis, Rudin W.(Theorem 7.17)

Theorem. Suppose {fn} is a sequence of functions, differentiable on [a,b] and such that {fn(x0)}
converges for some point x0 on [a, b]. If {f ′n} converges uniformly on [a, b], then {fn} converges
uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′n(x) (a ≤ x ≤ b) (A.19)

Appendix B. Bounded Variation

(Proofs are sketched, not rigirous.)

Definition 6. Let f be real-valued function defined on an interval [a, b] ∈ R. Total variation of f is
defined as;

V (f, [a, b]) ≡ sup
P∈P

{
nP−1∑
i=0
|f(xi+1)− f(xi)|

}
(B.1)

where P is the set of all partitions of [a, b].

Definition 7. A real-valued function f is called bounded variation(BV function) if total variation is
finite. i.e.

f ∈ BV ([a, b]) ⇐⇒ V (f, [a, b]) <∞ (B.2)

Theorem 7. Let f ∈ BV (a, c), BV (c, b). Then f ∈ BV (a, b) and;

V (f, [a, b]) = V (f, [a, c]) + V (f, [c, b]) (B.3)

Proof. (Sketch.) Union of P1 and P2 partition of [a, c], [c, b] respectively forms a partition for [a, b].
Observe that summation in (B.1) is equal for such partitions. Therefore V (f, [a, b]) ≥ V (f, [a, c]) +
V (f, [c, b]) is trivial. For the reverse inequality, consider any partition P of [a, b]. If c ∈ P , it can
be decomposed to form P1 and P2. If c /∈ P , then c can be added to partition P to form finer
partition and then decomposed to form P1 and P2. Hence any partition P (or finer version of P ) can
be decomposed to two partitions so V (f, [a, b]) ≤ V (f, [a, c]) + V (f, [c, b]). �

Lemma 2. Let f ∈ BV ([a, b]). Then V(f,[a,x]) is an increasing function.

Proof. Let x1 < x2. By Theorem (B.3);

V (f, [a, x2])− V (f, [a, x1]) = V (f, [x1, x2]) ≥ 0 (B.4)

�

Theorem 8. f ∈ BV ([a, b]) if and only if there exist two bounded monotone increasing function f1,
f2 such that f = f1 − f2.
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Proof. Choose f1(x) = V (f, [a, x]). We know that f1 is increasing. It is left to show f2 = f1 − f is
also increasing. Let x1 < x2;

f1(x2)− f(x2)− f1(x1) + f(x1) = V (f, [x1, x2])− (f(x2)− f(x1)) ≥ 0 (B.5)
For last inequality, observe that {x1, x2} is a coarse partition of [x1, x2] hence total variation is clearly
larger. For monotone increasing, define f ′1 = f1 + x and f ′2 = f2 + x.
For the reverse;

V (f, [a, b]) = V (f1 − f2, [a, b]) ≤ V (f1, [a, b]) + V (f2, [a, b])
= f1(a)− f1(b) + f2(a)− f2(b) <∞

(B.6)

�

Above theorem implies that if f ∈ BV ([a, b]), f is Riemann Integrable because monotone functions
are Riemann integrable. (See Darboux-Froda’s Theorem and Lebesgue Criterion for Riemann Integral
for discussion.)

Appendix C. Fourier Series

For complete discussion, see Apostol, Mathematical Analysis, Second Edition, Chapter 11. (Proofs
are all omitted.)

Definition 8. Let S = {φ0, φ1, φ2, · · · } be orthonormal on interval I, and assume that f ∈ L2(I).
The notation

f(x) ∼
∞∑
n=0

cnφn(x) (C.1)

will mean that the numbers c0, c1, c2, · · · are given by;

cn = (f, φn) =
∫
I

f(x) ¯φn(x)dx (C.2)

The series in (C.1) is called the Fourier series of f relative to S, and the numbers c0, c1, c2, · · · are
called the Fourier coefficients of f relative to S.

Theorem 9. (Jordan). If g is of bounded variation on [0, δ], then

lim
α→∞

2
π

∫ δ

0
g(t) sin(αt)

t
dt = g(0+) (C.3)

Theorem 10. Assume that f ∈ L([0, 2π]) and suppose f has period 2π. Then the Fourier series
generated by f will converge for a given value of x if, and only if, for some positive δ < π the
following limit exists:

lim
n→∞

2
π

∫ δ

0

f(x+ t) + f(x− t)
2

sin
(
(n+ 1

2 )t
)

t
(C.4)

Assume that f ∈ L([0, 1]) and suppose that f has period 1. Consider a fixed x in [0, 1] and a
positive δ < 1/2. Let

g(t) = f(x+ t) + f(x− t)
2 if t ∈ [0, δ] (C.5)

and
s(x) = g(0+) = lim

t→0+

f(x+ t) + f(x− t)
2 (C.6)

whenever this limit exists.

Theorem 11. (Jordan’s test) If f is of bounded variation on the compact interval [x − δ, x + δ] for
some δ < π, then the limit s(x) exists and the Fourier series generated by f converges to s(x).
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