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Abstract

Building upon the dynamic programming principle for set valued functions arising from
many applications, in this paper we propose a new notion of set valued PDEs. The key com-
ponent in the theory is a set valued Itô formula, characterizing the flows on the surface of the
dynamic sets. In the contexts of multivariate control problems, we establish the wellposedness
of the set valued HJB equations, which extends the standard HJB equations in the scalar case
to the multivariate case. As an application, a moving scalarization for certain time inconsistent
problems is constructed by using the classical solution of the set valued HJB equation.
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1 Introduction

In this paper we consider set valued functions taking the form:

V W Œ0; T � �Rd ! 2Rm :

That is, for each .t; x/ 2 Œ0; T � � Rd , the value V .t; x/ is a subset of Rm satisfying appropriate
properties. Such set valued functions, or their variants, have appeared in many applications, for ex-
ample, stochastic viability problems (cf. Aubin-Da Prato [2]), multivariate super-hedging problems
(cf. Kabanov [14] and Bouchard-Touzi [5]), multivariate dynamic risk measures (cf. Feinstein-
Rudloff [8]), time inconsistent optimization problems (cf. Karman-Ma-Zhang [15]), stochastic tar-
get problems (cf. Soner-Touzi [20, 22]), and recently, nonzero sum games with multiple equilibria
(Feinstein-Rudloff-Zhang [10]), and mean field games with multiple mean field equilibria (İşeri-
Zhang [13]). Many of these problems were considered non-standard or even ill-posed in the litera-
ture, and overall we lacked convenient mathematical tools to treat them. When viewed as set values,
however, their value functions (named set-value functions1 in the paper) enjoy many nice properties
as the value function of standard control problems, in particular the crucial dynamic programming
principle, or say the time consistency. Notice that, for a standard control problem, the combination
of the dynamic programming principle and the Itô formula leads to the popular PDE approach. Then
a natural question is:

can we characterize these set-value functions via set valued PDEs? (1.1)

This is exactly the goal of the present paper: to introduce the PDE approach and hence recover
the standard language for these challenging problems. To be precise, the main contributions of this
paper are as follows:

� Introduce derivatives for set valued functions and establish the set valued Itô formula.

� Propose a notion of set valued PDEs, and establish its wellposedness in the contexts of mul-
tivariate stochastic control problems.

� As an important application, construct a so called moving scalarization for a time inconsistent
problem by using the classical solution of the corresponding set valued PDE.

We hope this paper serves as the first step of our long term project on providing a convenient tool
and systematic study for multivariate problems, including games.

Our first main result is the set valued Itô formula, which roughly reads:

dV .t; Xt / D
h
@tV C @xV � b C

1

2
tr .@xxV W ��>/ �KV � C �

i
dt C

h
@xV� C �

i
dBt ; (1.2)

where dXt D btdt C �tdBt is an arbitrary diffusion. We refer to Theorem 3.1 below for the
precise meaning of the above formula. In particular, @tV ; @xV ; @xxV are derivatives of V defined
on GV , the graph of V , which consists of all points .t; x; y/ where y lies on Vb.t; x/, the boundary
of V .t; x/. The essence of the Itô formula is to characterize flows on the boundary surface. Given
the surface’s invariance under tangential deformations, a key feature of the set valued Itô formula

1We use this for the value functions from the applications, to distinguish from general set valued functions.
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is the inclusion of arbitrary driving forces � and � on GV , which take values in the tangent space.
This, along with the appropriate correction term KV �, ensures that the flows are not pushed away
from the boundary surface.

Our set valued HJB equation takes the following form: for some Hamiltonian function hV and
with appropriate terminal condition,

sup
a;�

nV .t; x; y/ �
h
@tV .t; x; y/C hV .t; x; y; @xV ; @xxV ; a; �/

i
D 0; .t; x; y/ 2 GV ; (1.3)

where a takes values in a control set, � takes values in the tangent space, and nV is the unit outward
normal vector. This is derived by applying the above Itô formula on the dynamic programming
principle for the set-value function of the multivariate control problem. As we see, the introduction
of � (and �) in (1.2) is crucial. We note that � disappears in the equation since nV � � D 0. However,
KV � is nonlinear in � and thus nV �KV � is an important component in the equation. The equation
(1.3) can be rewritten equivalently in terms of the signed distance function rV , see (5.3) below. We
emphasize that nV is part of the solution here and the equation is satisfied only on the graph GV ,
so the wellposedness of (1.3) has a completely different nature than that of standard PDEs.

In the scalar case: m D 1, we can easily see that V .t; x/ D Œv.t; x/; v.t; x/�, where v and v
are the value functions of the standard minimization and maximization problems, respectively. In
this case, nV D 1 or �1, and the tangent space is degenerate and thus � D 0. Then (1.3) reduces
exactly back to the standard HJB equations for v and v. So our set valued HJB equation is indeed a
natural extension of the standard HJB equation to the multivariate setting. Moreover, note that v and
v are the boundaries of V in this case, namely Vb.t; x/ D fv.t; x/; v.t; x/g, which inspires us to
focus on the boundary surface Vb instead of on the whole set V . We would like to point that, again
since � D 0, � D 0, in this case (1.2) also reduces back to the standard Itô formula for v.t; Xt / and
v.t; Xt /.

Our main result of the paper is that the dynamic set-value function of the multivariate stochastic
control problem is the unique classical solution of the set valued HJB equation (1.3), provided V

has sufficient regularity. We thus obtain the positive answer to our question (1.1) in this setting,
which further opens the door to the PDE approach for more general multivariate problems. Such
PDE characterization helps to understand better the structure and the nice properties of the dynamic
set-value function. In particular, it helps to construct (approximate) optimal controls with certain
Markovian structure. Indeed, when V is smooth, as in standard verification theorem we may use
the optimal arguments .a�; ��/ of the Hamiltonian in (1.3) to construct an optimal control for a
scalarized optimization problem, as we will explain in the next paragraph.

As an important application of our wellposedness result, we construct the moving scalariza-
tion for some time inconsistent problems, proposed by [15]2 and Feinstein-Rudloff [9]. Note that
we are in the multivariate setting and in general it is not feasible to optimize the multiple ob-
jects simultaneously. In practice quite often one considers the scalarized optimization problem:
maxy2V .0;x0/ '.y/, where ' W Rm ! R. This scalarized problem, unfortunately, is typically
time inconsistent. The idea of a moving scalarization is to find a dynamic scalarization function
ˆ.t; XŒ0;t�Iy/, withˆ.0; x0Iy/ D '.y/, such that the dynamic problem maxy2V .t;Xt /ˆ.t; XŒ0;t�Iy/

becomes time consistent. In Section 7 below we shall investigate this interesting application. In par-
ticular, we shall construct a moving scalarization for the mean variance problem explicitly.

2In [15] it’s called dynamic utility function, instead of moving scalarization.
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At this point we would like to mention that the present paper considers classical solutions only.
In particular, this requires that the set-value V .t; x/ is non degenerate and its boundary Vb.t; x/ is
a smooth m � 1 dimensional manifold, namely the co-dimension is 1. It is our strong interest to
remove these constraints and study viscosity solutions of more general set valued PDEs, thereby
broadening the applicability of the theory. We shall leave this important question to future research.

Some related literature. There is a large literature on set valued analysis, we refer to the book
Aubin-Frankowska [3] and the reference therein. However, our approach is completely different
from those in set valued analysis. We focus on the dynamics of the boundary surface, rather than
the dynamics of the whole set. Roughly speaking, we focus only on those special selectors whose
flow remains on the boundary. These selectors have nice properties and are sufficient to characterize
the whole sets. Moreover, the boundary is essentially the frontier which has intrinsic optimality and
thus is also important from practical point of view. We shall mention the recent paper Ararat-Ma-
Wu [1] on set valued backward SDEs, which is highly relevant to our paper. Given our set-value
function V .t; x/ and a state process X (e.g. a Brownian motion), we may introduce a set valued
process Yt WD V .t; Xt /. In spirit the process Y should satisfy a set valued backward SDE. However,
besides that we employ completely different approaches, except in some simple cases our set valued
process Y does not satisfy the equation in [1]. That is, the objectives of the two works are different.
We should mention that the applications mentioned in the beginning of this introduction fall into our
framework, although technically our current results do not cover many of them (which we intend to
study in our future research).

Our approach is strongly motivated by the studies on surface evolution equations, see e.g.
Sethian [18], Evans-Spruck [7], Soner [19], Barles-Soner-Souganidis [4], the monograph Giga [11],
and the references therein. These equations arise in various applications such as evolutions of phase
boundaries, crystal growths, image processing, and mean-curvature flows, to mention a few. These
works consider the dynamics of set valued function V .t/, more precisely the boundary Vb.t/, with-
out the state variable x. In our terms, roughly speaking these works study first order set valued
ODEs, while we extend to second order set valued PDEs. In particular, the set valued Itô formula is
not involved there. Another difference is, due to the nature of different applications, they study for-
ward equations with initial conditions while we study backward problems with terminal conditions.
This difference would be crucial when one concerns path dependent setting (not covered in this
paper), where one cannot do the time change freely due to the intrinsic adaptedness requirement.

Furthermore, within the surface evolution literature, our work is closely related to Soner-Touzi
[22] which studies stochastic target problems by using mean curvature type geometric flows. In our
contexts, their approach amounts to studying the following set-value function via its signed distance
function r yV :

yV .t/ WD
˚
.x; y/ W x 2 Rd ; y 2 V .t/

	
; and thus yVb.t/ WD

˚
.x; y/ W x 2 Rd ; y 2 Vb.t/

	
:

Clearly yV and V are equivalent, with the same graph: G yV D GV . The major difference here is that,
while rV and r yV agree on the graph (both are 0 by definition), their derivatives are different on the
graph, and consequently, the equation derived in [22] is different from our set valued HJB equation
(1.3). In particular, in the scalar case: m D 1, as mentioned (1.3) reduces back to the standard HJB
equations, but the equation for r yV does not seem to connect to the standard HJB equation directly.
Moreover, the normal vector n yV of yV is also different from nV , and does not serve as a moving
scalarization as we discussed. We shall provide more detailed discussions in Section 8.2 below.
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Finally, we remark that there are some very interesting studies on (possibly discontinuous) vis-
cosity solutions along this line, see e.g. [4], Chen-Giga-Goto [6], Soner-Touzi [20, 21]. It will be
interesting to explore these ideas in our setting.

The rest of the paper is organized as follows. In Section 2 we introduce the setting and define
the intrinsic derivatives of set valued functions. In Section 3 we prove the crucial set valued Itô
formula. In Section 4 we present the multivariate control problem. In Section 5 we introduce the
set valued HJB equation and show that the value function of the multivariate control problem is a
classical solution, and the uniqueness of the classical solution is established in Section 6. Section
7 is devoted to the application of moving scalarization. In particular we solve it explicitly for the
mean variance problem. In Section 8 we offer further discussions, including an extension to the
case that the terminal condition is non-degenerate, and comparisons with [1] and [22]. Finally we
complete some technical proofs in Appendix.

Notation. For the convenience of the readers, we list some frequently used notation here.

� D: subsets of Rm;

� V W Œ0; T � �Rd ! 2Rm : set valued functions, where in particular V .t; x/ � Rm is a set;

� Vb and Vo: the boundary and interior of V , respectively;

� GV : the graph of Vb , see (2.8) and (2.18);

� r: the signed distance function, see (2.1);

� n: the outward unit normal vector, see (2.2);

� T : the tangent space, see (2.4);

� � : the projection onto the boundary, see (2.3);

� r yf : the standard derivatives of a function yf ;

� @�f : intrinsic derivatives of f W GV ! R, see (2.6), (2.16), (2.19), (2.20), (2.21), and (2.22);

� X and .Y;Z/: solutions to SDEs and BSDEs, respectively, see e.g. (4.1);

� ‡ : forward dynamics typically on Vb , see e.g. (3.2);

� .�; �/: vector fields taking values on the tangent space T , see e.g. (3.2);

� K�
V �: correction term of � in the Itô formula, see (3.1);

� Lb;� : differential operator in the Itô formula, see (3.1);

� .h0V ; hV ;HV /: the related Hamiltonians, see (5.1);

� L: the differential operator of the HJB equation, see (5.2).
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2 Intrinsic derivatives of set valued functions

Throughout the paper all vectors are viewed as column vectors, � denotes the inner product, and >;c

denote the transpose and complement, respectively. We denote by r the gradient operator, and for
a function f W Rd � Rm ! R, we take the convention that the second derivative rxyf .x; y/ WD
Œ@x1yf; � � � ; @xdyf � 2 Rm�d .

2.1 Some basic materials

In this subsection we present some basic materials in geometry, which will be the starting point of
our set valued functions in this paper.

Let Dm
0 � 2

Rm denote the space of closed set D in Rm, and denote by Do and Db the interior
and the boundary of D, respectively. We equip Dm

0 with the metric:

d.D; QD/ WD d.D; QD/ _ d.Db; QDb/;

where d is the standard Hausdorff distance, i.e.

d.D; QD/ WD
�

sup
y2D

d.y; QD/
�
_
�

sup
Qy2 QD

d. Qy;D/
�
; d.y; QD/ WD inf

Qy2 QD
jy � Qyj:

Introduce the signed distance function of D: denoting by Dc the complement of D,

rD.y/ WD

�
d.y;Db/; y 2 Dc I

�d.y;Db/; y 2 D:
(2.1)

It is obvious that

Do D fy 2 Rm W rD.y/ < 0g; Db D fy 2 Rm W rD.y/ D 0g:

We next let Dm
2 denote the space of D 2 Dm

0 such that rD is twice continuously differentiable
with bounded derivatives on O".Db/ WD fy 2 Rm W jrD.y/j < "g for some " > 0. We remark
that the boundary Db is a manifold without boundary, as regular as rD. For each y 2 Db , let
nD.y/ 2 Rm denote the outward unit normal vector at y. It is clear that:

nD.y/ D ryrD.y/; y 2 Db and jryrD.y/j D 1; y 2 O".Db/: (2.2)

Moreover, for any y 2 O".Db/, for a possibly smaller " > 0, let �D.y/ denote the unique projection
of y on Db , i.e. �D.y/ 2 Db satisfies:

y D �D.y/C rD.y/nD.�D.y//; y 2 O".Db/: (2.3)

For any y 2 Db , let TD.y/ denote the tangent space:

TD.y/ WD
˚
� 2 Rm W � � nD.y/ D 0

	
; y 2 Db: (2.4)

For a function f W Db ! R, we define its intrinsic derivative @yf .y/ 2 TD.y/ by:

lim
"!0

f .�."// � f .y/

"
D @yf .y/ � �

0.0/; for any smooth curve � W R! Db with �.0/ D y: (2.5)
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Alternatively, for any smooth extension yf W Rm ! R, i.e. yf D f on Db , we have

@yf .y/ D ry yf .y/ � Œry yf .y/ � nD.y/�nD.y/ D ry yf .y/ � nD.y/nD.y/
>
ry
yf .y/: (2.6)

We emphasize that @yf .y/ does not depend on the choice of the extension yf .
We also recall the shape operator @ynD.y/ D Œ@yn1D.y/; � � � ; @ynmD.y/� 2 Rm�m, which cap-

tures the curvatures of Db at y.

2.2 Set valued functions

Consider a continuous function V W R! Dm
2 . Denote

Vb.x/ WD .V .x//b; rV .x; y/ WD rV .x/.y/; nV .x; y/ WD nV .x/.y/;

�V .x; y/ WD �V .x/.y/; TV .x; y/ WD TV .x/.y/;
(2.7)

and introduce the graph of V :

GV WD
˚
.x; y/ W x 2 R; y 2 Vb.x/

	
: (2.8)

When there is no confusion, for notational simplicity we may drop the subscript V in rV , nV , �V

and denote them as r;n; � . We say V 2 C 2.RIDm
2 / if rV is twice continuously differentiable with

bounded derivatives on O".GV / for some " > 0.

Remark 2.1 (i) We note that our results in the paper will only involve rV and its derivatives near
GV . For the convenience of our arguments, throughout the paper, we shall modify rV outside of
O".GV /, so that the modified function yrV satisfies:

� yrV D rV on O".GV /;

� yrV 2 C
2.R �RmIR/ with bounded derivatives;

� yrV .x; y/ � �
"
2

for all .x; y/ 2 VnO".GV / and yrV .x; y/ �
"
2

for all .x; y/ 2 V cnO".GV /.

We emphasize that all our results will not rely on the choice of such a modification. For notational
simplicity, we may identify the notation yrV with rV .

(ii) Similarly we may extend �V outside of O".GV /, still denoted as �V , such that

� On O".GV /, �V .x; y/ is the original unique projection of y on Vb.x/ such that the counter-
part of (2.3) holds true;

� �V .x; y/ is jointly measurable and �V .x; y/ 2 Vb.x/ for all .x; y/ 2 R �Rm;

� There exists a constant C D CV such that (modifying the extension of rV if needed)

jy � �V .x; y/j � C jrV .x; y/j: (2.9)

(iii) We can also extend nV to the whole space R � Rm, still denoted as nV , such that nV

is continuously differentiable with bounded derivatives. One typical such example is nV .x; y/ WD

ryrV .x; y/.
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We remark that (2.9) follows from (2.3) when .x; y/ 2 O".GV /, and the existence of C for
arbitrary .x; y/ is due to the fact that jrV .x; y/j �

"
2

for .x; y/ … O".GV /.
Fix x0 2 R. For each y 2 Vb.x0/, consider the ODE: in light of Remark 2.1,

‡y.x/ D y �

Z x

x0

rxrV nV . Qx;‡
y. Qx// d Qx: (2.10)

Then clearly the above ODE has a unique solution.

Proposition 2.2 Assume V 2 C 2.RIDm
2 / and x0 2 R. Then, for any x 2 R,

Vb.x/ D
˚
‡y.x/ W y 2 Vb.x0/

	
: (2.11)

Consequently, (2.10) involves rV and nV only on GV and thus does not depend on the modification
of rV and nV .

Proof For notational simplicity, we drop the subscripts and denote r;n; � .
We first show that, for any y0 2 Vb.x0/ and x > x0, ‡.x/ WD ‡y0.x/ 2 Vb.x/. Let " > 0

be such that the original r in (2.1) is twice continuously differentiable on O".GV /. Note that
.x0; y0/ 2 GV � O".GV /. Denote

� WD inf
˚
x > x0 W .x; ‡.x// … O".GV /

	
:

Then, for x 2 Œx0; �/, apply the chain rule we have

d

dx
r.x; ‡.x// D rxr.x; ‡.x// � ryr.x; ‡.x// � Œrxr n.x; ‡.x//�:

Recall (2.3) and denote �.x/ WD �.x;‡.x// 2 Vb.x/. By (2.2) we have

d

dx
r.x; ‡.x// D rxr.x; ‡.x//

�
ryr.x; �.x// � n.x; �.x// � ryr.x; ‡.x// � n.x; ‡.x//

�
:

Therefore, by (2.3) and the continuous differentiability of ryr and n, we have

d

dx
r.x; ‡.x// D Qb.x/r.x; ‡.x//; x 2 Œx0; �/;

for some appropriate continuous function Qb W R ! R. Note that r.x0; ‡.x0// D r.x0; y0/ D 0.
Then the above ODE implies r.x; ‡.x// D 0 for all x 2 Œx0; �/, which in turn implies � D 1.
Thus r.x; ‡.x// D 0 and hence ‡.x/ 2 Vb.x/ for all x � x0. This implies that f‡y.x/ W y 2
Vb.x0/g � Vb.x/ for all x � x0. Similarly we can show that f‡y.x/ W y 2 Vb.x0/g � Vb.x/ for
all x � x0, and hence for all x 2 R.

On the other hand, for any y 2 Vb.x/, consider (2.10) starting from x with initial value y:

Q‡y.x0/ D y �

Z x0

x

rxr n. Qx; Q‡y. Qx//d Qx:

Then by the above result we have y0 WD Q‡y.x0/ 2 Vb.x0/. By the wellposedness of the ODE
(2.10), one can easily show that Q‡y.x0/ D ‡y0.x0/ for all x0 2 R, and thus y D Q‡y.x/ D ‡y0.x/.
This proves the opposite inclusion in (2.11).
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Remark 2.3 (i) Later on we will define @xV .x; y/ D �rxrV nV .x; y/ for .x; y/ 2 GV , see (2.19)
below. Then (2.10) can be rewritten as

‡y.x/ D y C

Z x

x0

@xV . Qx;‡y. Qx//d Qx: (2.12)

Thus (2.11) can be viewed as the fundamental theorem of calculus for set valued functions:

Vb.x/ D Vb.x0/C

Z x

x0

@xV . Qx;Vb. Qx//d Qx: (2.13)

(ii) However, (2.13) should be interpreted as (2.12) and (2.11), rather than the meaning in the
standard set valued analysis, which roughly speaking considers

Q‡.x/ WD y C

Z x

x0

@xV . Qx; Q
. Qx//d Qx; 8y 2 Vb.x0/; Q
. Qx/ 2 Vb. Qx/:

The above Q‡.x/ is in general not in Vb.x/. See also related discussion in Section 8.3 below.

(iii) Let ‡ 2 C 1.RIRm/ be such that ‡.x/ 2 Vb.x/ for all x. Then, by (2.2), we have

0 D
d

dx
rV .x; ‡.x// D rxrV .x; ‡.x//CryrV .x; ‡.x// � @x‡.x/

D rxrV .x; ‡.x//C nV .x; ‡.x// � @x‡.x/:
(2.14)

(iv) The set valued Itô formula in the next section, which is one of the main results of this paper,
can be viewed as the stochastic version of Proposition 2.2.

The next result, although technically not used in this paper, is interesting in its own right. We
postpone its proof to Appendix.

Proposition 2.4 Assume V 2 C 2.RIDm
2 / and .x0; y0/ 2 GV . Then the curve ‡.x/ WD ‡y0.x/

determined by (2.10) is a local geodesic of the flow V in the following sense. For any continuous
curve �.x/ 2 Vb.x/ with �.x0/ D y0, we have

lim
x!x0

1

jx � x0j

�
L‡ .x0; x/ � L� .x0; x/

�
� 0;

where L‡ .x0; x/ (resp. L� .x0; x/) denotes the length of ‡ (resp. � ) between x0; x.

We now turn to functions f W GV ! R. For fixed x, the intrinsic derivative @yf .x; y/ for
y 2 Vb.x/ is defined by (2.5) or equivalently by (2.6). We next define the intrinsic derivative of f
with respect to x following the local geodesic ‡ defined by (2.10):

@xf .x0; y0/ WD lim
x!x0

f .x;‡y0.x// � f .x0; y0/

x � x0
; .x0; y0/ 2 GV : (2.15)

Equivalently, for any smooth extension yf of f , we have

@xf .x0; y0/ D lim
x!x0

yf .x;‡y0.x// � yf .x0; y0/

x � x0

D rx
yf .x0; y0/ � rxrVry

yf � nV .x0; y0/:

(2.16)
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Again, the right side above does not depend on the choice of the extension yf .
We say f 2 C 1.GV IR/ if f has continuous intrinsic derivatives @yf and @xf . By (2.15), it

is obvious that @xf is linear on f , and the product rule and the chain rule remain true:

@x.fg/ D g@xf C f @xg; for all f; g 2 C 1.GV IR/I

@xŒg.f /� D g
0.f /@xf; for all f 2 C 1.GV IR/; g 2 C

1.RIR/:
(2.17)

2.3 Intrinsic derivatives of set valued functions

We now extend all the above analysis to functions V W Œ0; T � � Rd ! Dm
2 . In this and the

next section we may allow infinite time horizon Œ0;1/. However, in later sections we require T
to be finite, so for simplicity we consider finite T here as well. Introduce Vb.t; x/, rV .t; x; y/,
nV .t; x; y/, �V .t; x; y/, TV .t; x; y/ in an obvious manner as in (2.7) and denote

GV WD
˚
.t; x; y/ W .t; x/ 2 Œ0; T � �Rd ; y 2 Vb.t; x/

	
: (2.18)

As before we may use the simplified notations r;n; � when there is no confusion, and we will
always use their modified version or extension as in Remark 2.1.

Recall (2.15) and (2.16) when V is defined on R. Now for our more general V and for any
function f W GV ! R, we define its intrinsic partial derivatives @tf 2 R; @xf 2 Rd ; @yf 2

Rm, and the higher order intrinsic derivatives in an obvious manner, for example, the second order
derivatives are defined as:

@xixj f WD @xi .@xj f /:

Moreover, for f W GV ! Rn, we define its intrinsic derivatives component wise.
Finally, by considering the special function f0.t; x; y/ WD y and its natural extension yf0.t; x; y/ D

y, applying (2.16) component wise we define the intrinsic derivatives of V .

Definition 2.5 For any .t; x; y/ 2 GV and by denoting f0.t; x; y/ WD y, define

@tV .t; x; y/ WD @tf0.t; x; y/ D �rtr.t; x; y/n.t; x; y/ 2 RmI

@xiV .t; x; y/ WD @xif0.t; x; y/ D �rxi r.t; x; y/n.t; x; y/ 2 Rm; i D 1; � � � ; d:
(2.19)

We recall Remark 2.3 and note that (2.16) becomes: for any f 2 C 1.GV IR/,

@tf D rt yf Cry yf � @tV ; @xif D rxi
yf Cry yf � @xiV ; on GV : (2.20)

Note that @tV and @xV are functions on GV , then we may continue to define higher order deriva-
tives of V by applying (2.16) or (2.20) repeatedly.

Lemma 2.6 Assume rV 2 C
2.Œ0; T � �Rd IDm

2 /. Then

@xixjV .t; x; y/ D �rxixj r n.t; x; y/ � rxj r @xin.t; x; y/I (2.21)

@xni D rxyi rI @yni D ryiyr: (2.22)
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The proof is quite straightforward, we thus postpone it to Appendix. Throughout the paper, we shall
take the notational convention, for i D 1; � � � ; m:

@xV WD Œ@x1V ; � � � ; @xdV � 2 Rm�d ; @xxV i WD Œ@x1xV i ; � � � ; @xdxV i � 2 Rd�d I

@xn D Œ@x1n; � � � ; @xdn� 2 Rm�d ; @yn D Œ@y1n; � � � ; @ymn� 2 Rm�m:
(2.23)

Remark 2.7 (i) At .t; x; y/ 2 GV , since jnj2 D 1, by (2.17) we have @xj n � n D 0. That is,
@xj n.t; x; y/ 2 TV .t; x; y/. So (2.21) provides an orthogonal decomposition of @xxV . In particu-
lar, unlike the first order derivatives in (2.19), @xixjV is in general not parallel to n.

(ii) It is clear that

@xxV � n WD
�
@xixjV � n

�
1�i;j�d

D �rxxr 2 Rd�d

is symmetric. However, in general @xxV is not symmetric: rxj r@xin ¤ rxi r@xj n, i ¤ j .

(iii) @yn D ryyr 2 Rm�m is symmetric. Moreover, since @yin � n D 0, we see that 0 is an
eigenvalue of @yn with eigenvector n.

Example 2.8 (i) Let w W Œ0; T � � R2 ! R2 and u W Œ0; T � � R2 ! .0;1/ be continuously
differentiable. Set, with d D m D 2,

V .t; x/ WD
˚
y 2 R2 W jy � w.t; x/j � u.t; x/

	
;

and thus Vb.t; x/ D
˚
y 2 R2 W jy � w.t; x/j D u.t; x/

	
:

It is clear that

r.t; x; y/ D jy � w.t; x/j � u.t; x/; .t; x; y/ 2 Œ0; T � �R2 �R2:

Then, for .t; x; y/ near GV (so that jy � w.t; x/j > 0), by straightforward calculation,

rtr D �
.y � w/ � rtw

jy � wj
� rtuI rxi r D �

.y � w/ � rxiw

jy � wj
� rxiuI ryi r D

yi � w
i

jy � wj
I

rxixj r D
rxiw � rxjw � .y � w/ � rxixjw

jy � wj
�
Œ.y � w/ � rxiw�Œ.y � w/ � rxjw�

jy � wj3
� rxixj uI

rxiyj r D �
rxiw

j

jy � wj
C
Œ.y � w/ � rxiw�.yj � w

j /

jy � wj3
; ryiyj r D

1fiDj g
jy � wj

�
Œyi � w

i �Œyj � w
j �

jy � wj3
;

Then, by (2.2), Definition 2.5, and Lemma 2.6, at .t; x; y/ 2 GV we have

n D
y � w

u
I @tV D

�
rtw � nCrtu

�
nI @xiV D

�
rxiw � nCrxiu

�
nI

@xin D
1

u

�
� rxiw C Œn � rxiw�n

�
; @yin

j
D
1

u

�
1fiDj g � ninj

�
I

@xixjV D �
h 1
u

�
rxiw � rxjw � .rxiw � n/.rxjw � n/

�
� rxixjw � n � rxixju

i
n

�
1

u

�
rxjw � nCrxju

��
rxiw � .rxiw � n/n

�
:

(2.24)
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In particular, we see that in general @xixjV ¤ @xjxiV for i ¤ j .

(ii) Consider a special case that w D 0 and u satisfies the heat equation:

rtuC
1

2
tr .rxxu/ D 0:

Then by (2.24) we have @tV D rtu n, @xixjV D rxixju n, on GV . Thus V satisfies the following
equation: @tV C 1

2
tr .@xxV / D 0, on GV . This clearly implies the following set valued heat

equation:

n �
�
@tV C

1

2
tr .@xxV /

�
D 0; on GV :

We remark that we assumed r had bounded derivatives on GV in all above analyses. For our
applications later, however, V .T; x/ could be degenerate, in the sense that V .T; x/ D fg.x/g is a
singleton and hence a degenerate manifold in Rm. Note that in (2.24), @xn, @yn, and @xxV explode
when u D 0. This motivates us to define the following space.

Definition 2.9 (i) We say V 2 C 1;2.Œ0; T � � Rd IDm
2 / if rV 2 C

1;2.O".GV /IR/ for some " > 0

such that all the related derivatives are bounded and uniformly Lipschitz continuous in y. Conse-
quently, @tV ; @xV ; @xxV , @xn, @yn are bounded and uniformly Lipschitz continuous in y on GV .

(ii) We say V 2 C 1;2.Œ0; T / � Rd IDm
2 / if V 2 C 0.Œ0; T � � Rd IDm

0 /, and V 2 C 1;2.Œ0; T �

ı� �Rd IDm
2 / for all 0 < ı < T . Note that we do not require V .T; x/ 2 Dm

2 here.

3 The set valued Itô formula

We first introduce the probabilistic setting. Let � WD f! 2 C.Œ0; T �;Rd / W !0 D 0g be the
canonical space, B the canonical process, i.e. B.!/ D !, P the Wiener measure, i.e. B is an P -
Brownian motion, and F D FB the natural filtration generated by B . For a generic Euclidean space
E and p � 1, let L

p

loc
.E/ denote the space of F -progressively measurable E-valued processes �

such that
R T
0 j�t j

pdt <1, a.s., and L
p

loc
.RmIE/ the space of F -progressively measurable random

fields � W .t; !; y/ 2 Œ0; T ����Rm ! E such that �.�; �; 0/ 2 L
p

loc
.E/ and � is uniformly Lipschitz

continuous in y.
Fix V 2 C 1;2.Œ0; T � � Rd IDm

2 / with corresponding " > 0, and x0 2 Rd , b 2 L1
loc
.Rd /,

� 2 L2
loc
.Rd�d /, � 2 L1

loc
.RmIRm/, � 2 L2

loc
.RmIRm�d /. Denote,

Xt WD x0 C

Z t

0

bsds C

Z t

0

�sdBs;

and introduce the (random) differential operators: recalling (2.23),

Lb;�V .t; !; x; y/ WD
�
@tV C @xVb C

1

2
tr .�>@xxV�/

�
.t; !; x; y/;

K�
V �.t; !; x; y/ WD

�
tr
�
�>@xn� C

1

2
�>@yn�

�
n
�
.t; !; x; y/;

(3.1)

where tr .�>@xxV�/ 2 Rm with i -th component tr .�>@xxV i�/, and recalling Remark 2.1,
we may extend the derivatives of V and n to Œ0; T � � Rd � Rm. Here @xVb.t; !; x; y/ D
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@xV .t; x; y/b.t; !/, and we take this convention for all combinations of functions involving differ-
ent variables. Moreover, as usual in the literature, when there is no confusion we omit the variable
!.

We are now ready to establish the set valued Itô formula.

Theorem 3.1 Let V ; x0; b; �; X; �; � be as above. Assume, for each i , �i .t; !; y/ 2

TV .t; Xt .!/; y/ holds for all y 2 Vb.t; Xt .!//, for dt � dP -a.e. .t; !/. For each y 2 Rm,
let ‡y denote the unique strong solution of SDE: recalling Remark 2.1,

‡
y
t D y C

Z t

0

�
Lb;�V �K�

V � C �
�
.s; Xs; ‡

y
s /ds C

Z t

0

�
@xV� C �

�
.s; Xs; ‡

y
s /dBs: (3.2)

(i) Assume �t .y/ 2 TV .t; Xt ; y/, for all y 2 Vb.t; Xt /, for dt � dP -a.e. .t; !/. Then

f‡
y
t W y 2 Vb.0; x0/g � Vb.t; Xt / a.s., for all 0 � t � T :

In particular, in this case no extension is needed in (3.2).
Moreover, if Vb takes values in connected compact sets, then the equality holds:˚

‡
y
t W y 2 Vb.0; x0/

	
D Vb.t; Xt / a.s., for all 0 � t � T :

(ii) Assume �t .y/ � nV .t; Xt ; y/ � 0 for all y 2 Vb.t; Xt .!//, for dt � dP -a.e. .t; !/. Then

f‡
y
t W y 2 Vo.0; x0/g � Vo.t; Xt / a.s., for all 0 � t � T :

(iii) Assume �t .y/ � nV .t; Xt ; y/ � 0 for all y 2 Vb.t; Xt .!//, for dt � dP -a.e. .t; !/. Then

f‡
y
t W y 2 V c.0; x0/g � V c.t; Xt / a.s., for all 0 � t � T :

Proof (i) Fix y0 2 Vb.0; x0/ and denote ‡ D ‡y0 . Introduce

� WD inf
˚
t � 0 W .t; Xt ; ‡t / … O".GV /

	
^ T:

Since .0; x0; y0/ 2 GV , then � > 0, and r is smooth on Œ0; ��. By the standard Itô’s formula,

dr.t; Xt ; ‡t / D ƒ.t; Xt ; ‡t /dt CM.t;Xt ; ‡t /dBt ; where (3.3)

ƒ WD rtrCrxr � b Cryr � .Lb;�V �K�
V � C �/

C
1

2
tr
�
�>rxxr� C .@xV� C �/>ryyr.@xV� C �//C 2.@xV� C �/>rxyr�

�
I

M WD rxr>� Cryr>.@xV� C �/:

We claim that, when y 2 Vb.t; x/,

ƒ.t; Xt ; y/ D n.t; Xt ; y/ � �t .y/; M.t; Xt ; y/ D
�
n � �1; � � � ;n � �d

�
.t; Xt ; y/: (3.4)

Indeed, in this case we have ryr D n. Then by (2.19), (2.21), and (2.22) we have:

n � .Lb;�V �K�
V �/ D �rtr � rxr � b � 1

2
tr
�
�>rxxr� C 2�>rxyr� C �>ryyr�

�
I�

ryyr@xV
�
ij
D ryiyr � @xjV D �ryiyr � rxj r n D 0; 1 � i � m; 1 � j � d I�

.@xV />rxyr
�
ij
D @xiV � rxjyr D �rxi r n � rxjyr D 0; 1 � i; j � d:
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Here we used the facts @xin � n D 0, ryiyr � n D 0, rxiyr � n D 0. Plug these into the expression
of ƒ in (3.3) we obtain ƒ D n � � straightforwardly. Similarly,

M WD rxr>� � n>Œrx1r n; � � � ;rxd r n�� C n>� D n>�:

Thus (3.4) holds true.
Since �.t; y/; �i .t; y/ 2 TV .t; Xt ; y/, we have

ƒ.t; Xt ; y/ DM.t;Xt ; y/ D 0; 8y 2 Vb.t; Xt /:

Now for any .t; x; y/ 2 O".GV /, since �.t; x; y/ 2 Vb.t; x/, then

ƒ.t; Xt ; �.t; Xt ; ‡t // D 0; M.t; Xt ; �.t; Xt ; ‡t // D 0; 0 � t � �:

Note further that j‡t � �.t; Xt ; ‡t /j D jr.t; Xt ; ‡t /j. Then, by the desired regularity in Definition
2.9 (i) we have

ƒ.t; Xt ; ‡t / D ƒ.t; Xt ; ‡t / �ƒ.t; Xt ; �.t; Xt ; ‡t // D Qbtr.t; Xt ; ‡t /I
M.t;Xt ; ‡t / DM.t;Xt ; ‡t / �M.t;Xt ; �.t; Xt ; ‡t // D Q�tr.t; Xt ; ‡t /I
where j Qbt j � C Œ1C jbt j C j�t j

2
C j�t .0/j

2�; j Q�t j � C Œj�t j C j�t .0/j�:

(3.5)

In particular, Qb 2 L1
loc
.R/, Q� 2 L2

loc
.Rd /. Note that (3.3) becomes:

dr.t; Xt ; ‡t / D Qbtr.t; Xt ; ‡t /dt C Q�tr.t; Xt ; ‡t /dBt ; 0 � t � �: (3.6)

Introduce

Q�t WD exp
�
�

Z t

0

Q�s � dBs �

Z t

0

Œ Qbs C
1

2
j Q�sj

2�ds
�
: (3.7)

Then, recalling r.0; X0; ‡0/ D r.0; x0; y0/ D 0, we have

r.t; Xt ; ‡t / D r.0; X0; ‡0/ Q�t D 0; 0 � t � �:

This implies � D T , a.s. and thus ‡t 2 Vb.t; Xt /, 0 � t � T , a.s.
Moreover, assume further that Vb takes values in connected, compact sets. Note that y 7! ‡

y
t

is a homeomorphism almost surely (See Kunita [16]). In particular, it is continuous and locally
one-to-one. Since Vb.0; x0/ is compact, it is mapped to a closed set in Vb.0; x0/. By invariance
of domains for manifolds without boundaries, y 7! ‡

y
t is an open mapping in relative topologies

of Vb.0; x0/,Vb.t; Xt /. Therefore, Vb.0; x0/ maps to an open set in Vb.t; Xt /. This concludes the
equality as we assumed connectedness.

(ii) In this case, by (3.4) we have

ƒ.t; Xt ; y/ D n.t; Xt ; y/ � �t .y/ � 0; M.t; Xt ; y/ D 0; for all y 2 Vb.t; Xt /: (3.8)

Fix y0 2 Vo.0; x0/ and denote ‡ D ‡y0 . Let ı < "
2

be small enough so that r.0; x0; y0/ < �ı.
Introduce recursively a sequence of stopping times: �0 WD 0, and for n D 0; 1; � � � ,

�2nC1 WD inf
˚
t > �2n W r.t; Xt ; ‡t / D �ı

	
^ T I

�2nC2 WD inf
˚
t > �2nC1 W jr.t; Xt ; ‡t /j D 2ı

	
^ T:
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Since r.0; x0; y0/ < �ı, it is clear that r.t; Xt ; ‡t / � �ı, �0 � t � �1. Now for �1 � t � �2, note
that jr.t; Xt ; ‡t /j � 2ı. Then by (3.8) and following the same arguments as in (3.6) we derive: for
�1 � t � �2 and denoting �t WD �.t; Xt ; ‡t /,

dr.t; Xt ; ‡t / D
�
Qbtr.t; Xt ; ‡t /C n.t; Xt ; �t / � �t .�t /

�
dt C Q�tr.t; Xt ; ‡t /dBt :

Since r.�1; X�1 ; ‡�1/ < 0 and n.t; Xt ; �t / � �t .�t / � 0, we can easily see that r.t; Xt ; ‡t / < 0 for
all �1 � t � �2. In particular, r.�2; X�2 ; ‡�2/ D �2ı < �ı on f�2 < T g. Repeating the arguments
we see that r.t; Xt ; ‡t / < 0 for all 0 � t � �n and for all n.

It remains to show that �n D T for all n large, which clearly implies that r.t; Xt ; ‡t / < 0 for
all 0 � t � T . Assume by contradiction that �n < T for all n. Then

r.�2nC1; X�2nC1 ; ‡�2nC1/ D �ı; r.�2nC2; X�2nC2 ; ‡�2nC2/ D �2ı; 8n:

Denote �� WD lim
n!1

�n. Sending n ! 1 at above and by the continuity of Xt and ‡t , we obtain

r.��; X�� ; ‡��/ D �ı and r.��; X�� ; ‡��/ D �2ı, which is a desired contradiction.
(iii) follows from similar arguments as in (ii).

4 A multivariate control problem

Recall the canonical setting introduced in the beginning of Section 3. Given 0 � t < T , we shall
also consider the shifted Brownian motion B ts WD Bs � Bt , and the shifted filtration F t WD FB

t

on Œt; T �. For a generic Euclidean space E, let L2.Ft ; E/ denote the set of Ft -measurable square
integrableE-valued random variables, and L2.F t ; E/ the set of F t -progressively measurable square
integrable E-valued processes on Œt; T �.

Let A be a domain in some Euclidean space. For each t 2 Œ0; T �, our set of admissible controls
At consists of F t -progressively measurable A-valued processes ˛. We remark that in this paper we
consider open loop controls, which is more convenient to study the regularities and to construct de-
sired approximations for our value functions. However, as in standard stochastic control problems,
one can easily see that the set values in this section will remain the same if we consider appropriate
closed loop controls.

Given .t; x/ 2 Œ0; T � �Rd , consider the following controlled dynamics: for each ˛ 2 At ,

X t;x;˛s D x C

Z s

t

b.r; X t;x;˛r ; ˛r/dr C

Z s

t

�.r; X t;x;˛r ; ˛r/dBr ;

Y t;x;˛s D g.X
t;x;˛
T /C

Z T

s

f .r; X t;x;˛r ; Y t;x;˛r ; Zt;x;˛r ; ˛r/dr �

Z T

s

Zt;x;˛r dBr :

(4.1)

Here X; Y;Z take values in Rd ;Rm;Rm�d , respectively, and b; �; f; g are in appropriate dimen-
sions and satisfy certain technical conditions which will be specified later. We emphasize that Y is
typically multiple dimensional: m > 1. Our set-value is defined as:

V .t; x/ WD cl
˚
Y
t;x;˛
t W ˛ 2 At

	
� Rm: (4.2)

Here cl denotes the closure. Thus V is a set valued mapping Œ0; T ��Rd ! 2Rm . We now motivate
this set-value function in the following remarks.
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Remark 4.1 In the scalar case: m D 1, consider the standard control problems:

v.t; x/ WD inf
˛2At

Y
t;x;˛
t ; v.t; x/ WD sup

˛2At

Y
t;x;˛
t :

Then it is obvious that

V .t; x/ D Œv.t; x/; v.t; x/�: (4.3)

That is, the standard optimization problems are characterizing the boundary of our set-value func-
tion. In this paper, we will characterize the boundary of V through a set valued HJB equation, and
thus we extend the scalar optimization problem to the multivariate setting.

Remark 4.2 The set valued functions can be used to analyze some time inconsistent optimization
problems. Consider the well known mean variance optimization problem:

V0 WD sup
˛2A

h
EŒX

0;x0;˛
T � �

�

2
Var.X0;x0;˛T /

i
;

where X t;x;˛s D x C

Z s

t

˛rdr C

Z s

t

˛rdBr :

(4.4)

Here X;B; ˛ are all scalar processes. Note that Var.XT / D EŒjXT j
2� � jEŒXT �j

2. Introduce

V .t; x/ WD cl
˚
Y
t;x;˛
t W ˛ 2 At

	
; where

Y t;x;˛;1s D X
t;x;˛
T �

Z T

s

Zt;x;˛;1r dBr ; Y t;x;˛;2s D jX
t;x;˛
T j

2
�

Z T

s

Zt;x;˛;2r dBr :
(4.5)

Then one can easily verify that

V0 WD sup
y2V .0;x0/

'.y/; where '.y/ WD y1 C
�

2
jy1j

2
�
�

2
y2: (4.6)

Our goal of this paper is to characterize the dynamic set-value function V . In fact, in this special
case we can solve V explicitly, following the calculation in Pedersen-Peskir [17, Theorem 3, Part
2] 3:

V .t; x/ WD
n
.y1; y2/ W y1 2 R; y2 � e

�.T�t/x2 C

�
y1 � xe

�.T�t/
�2

1 � e�.T�t/

o
� R2: (4.8)

Then, given the set V .0; x0/, it is trivial to solve the deterministic optimization problem (4.6):

V0 D x0 C
1

2�
ŒeT � 1�; with optimal arguments in (4.6):

y�1 WD x0 C
1

�
ŒeT � 1�; y�2 WD jy

�
1 j
2
C

1

�2
ŒeT � 1�:

(4.9)

We also refer to Section 7 below for the related time inconsistency issue.
3In the mean variance portfolio selection literature, including [17], typically one uses geometric Brownian motion

setting and the controlled dynamics (the wealth process) becomes: with u denoting the control,

QX
t;x;u
s D x C

Z s

t
ur QX

t;x;u
r dr C

Z s

t
ur QX

t;x;u
r dBr : (4.7)

Clearly, this is equivalent to our formulation by setting ˛ D u QX and then QX t;x;u D X t;x;˛ . Moreover, as already
observed in [17], the optimal u�s explodes when QX t;x;us D 0. Our ˛� always exists however, as implied by [17].
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Remark 4.3 (i) The problem (4.2) can also be viewed as a stochastic target problem:

V .t; x/ D cl
˚
y 2 Rm W 9˛;Z such that Y t;x;y;˛;ZT D g.X

t;x;˛
T /; a.s.

	
;

where Y t;x;y;˛;Zs D y �

Z s

t

f .r; X t;x;˛r ; Y t;x;y;˛;Zr ; Zr ; ˛r/dr C

Z s

t

ZrdBr :
(4.10)

(ii) Note that at above V .T; x/ D fg.x/g is a singleton. In this respect we may easily extend
our setting to non-degenerate terminal G W Rd ! Dm

0 . That is,

V .t; x/ WD cl
˚
y 2 Rm W 9˛;Z such that Y t;x;y;˛;ZT 2 G.X

t;x;˛
T /; a.s.

	
: (4.11)

All our results in this paper can be extended to this case as well, see Section 8.1 below.

In the rest of this section, we establish the dynamic programming principle (DPP) for V . For
this purpose, we first specify the technical conditions on the coefficients.

Assumption 4.4 (i) .b; �/ W .t; x; a/ 2 Œ0; T � � Rd � A ! .Rd ;Rd�d / are bounded, uniformly
continuous in .t; a/, and uniformly Lipschitz continuous in x.

(ii) f W .t; x; y; z; a/ 2 Œ0; T � � Rd � Rm � Rm�d � A ! Rm is uniformly continuous in
.t; x; a/ and f .t; x; 0; 0; a/ is bounded. Moreover, f is continuously differentiable in .y; z/ with
ryf;rzf bounded and uniformly Lipschitz continuous in .y; z/.

(iii) g W x 2 Rd ! Rm is bounded and uniformly continuous in x.

It is clear that (4.1) is wellposed for any ˛ 2 At , and thus V is well defined by (4.2). Now for
0 � t < T , x 2 Rd , F t -stopping time � � t , � 2 L2.F t

� ;R
m/, and ˛ 2 At , introduce:

Y �;�It;x;˛s D � C

Z �

s

f .r; X t;x;˛r ; Y �;�It;x;˛r ; Z�;�It;x;˛r ; ˛r/dr �

Z �

s

Z�;�It;x;˛r dBr : (4.12)

We then have the crucial DPP as follows.

Theorem 4.5 Let Assumption 4.4 hold and V be defined by (4.2). For any 0 � t < T , x 2 Rd ,
and any F t -stopping time � � t , it holds

V .t; x/ D cl
˚
Y
�;�It;x;˛
t W 8˛ 2 At ; � 2 L2.F t

� ;R
m/ s.t. � 2 V .�; X t;x;˛� / a.s.

	
: (4.13)

Proof Without loss of generality we prove (4.13) only at .t; x/ D .0; x0/, and for notational
simplicity we omit the superscripts 0;x0 . Denote the right side of (4.13) as QV .0; x0/.

Step 1. We first show that V .0; x0/ � QV .0; x0/. Fix arbitrary y0 2 V .0; x0/ and " > 0. By
definition of V .0; x0/ there exists ˛ D ˛" 2 A0 such that jy0 � Y ˛0 j � ". Denote � WD Y ˛� . It is
clear that Y ˛0 D Y

�;�I˛
0 and thus jy0 � Y

�;�I˛
0 j � ". We claim that

� 2 V .�; X˛� / a.s. (4.14)

Then Y �;�I˛0 2 QV .0; x0/, and by the arbitrariness of " > 0 we obtain y0 2 QV .0; x0/.
To see (4.14), we consider the shifted canonical space: �t WD f! 2 C.Œt; T �;Rd / W !t D 0g.

For any ! 2 �; Q! 2 �t , and � 2 L2.FT /, introduce

.! ˚t Q!/s WD !s1Œ0;t/ C .!t C Q!s/1Œt;T �.s/; � t;!. Q!/ WD �.! ˚t Q!/:
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Then it is clear that ! ˚t Q! 2 �, and � t;! 2 L2.F t
T / for a.e. ! 2 �. In particular, for a.e. ! 2 �,

we have ˛t;! 2 At , and by (4.1) and denoting  ˛;t;! WD . 0;x0;˛/t;! for  D X; Y;Z,

X˛;�;!s D X˛� .!/C

Z s

�

b.r; X˛;�;!r ; ˛�;!r /dr C

Z s

�

�.r; X˛;�;!r ; ˛�;!r /dB�r ;

Y ˛;�;!s D g.X
˛;�;!
T /C

Z T

s

f .r; X˛;�;!r ; Y ˛;�;!r ; Z˛;�;!r ; ˛�;!r /dr �

Z T

s

Z˛;�;!r dB�r :

This implies (4.14) immediately.
Step 2. We next prove the opposite inclusion: QV .0; x0/ � V .0; x0/. Fix arbitrary y0 2 QV .0; x0/

and " > 0. By definition of QV .0; x0/ there exist ˛ D ˛" 2 A0 and � D �" 2 L2.F� ;R
m/ such

that jy0 � Y
�;�I˛
0 j � " and P .E/ D 1, where

E WD
˚
! 2 � W �.!/ 2 V .�.!/;X˛� .!//

	
:

Our goal is to construct an Ǫ 2 A0 such thatˇ̌
Y Ǫ0 � Y

�;�I˛
0

ˇ̌
� C": (4.15)

Then jy0 � Y Ǫ0 j � "C C". Since Y Ǫ0 2 V .0; x0/ by definition, then y0 2 V .0; x0/.
We construct Ǫ by utilizing the desired regularities as in the standard literature. First let 0 D

t0 < � � � < tn D T be a partition such that ti � ti�1 � "2, i D 1; � � � ; n, and let fOmj gj�1 be a
partition of Rm and fOd

k
gk�1 a partition of Rd such that the diameter of each Omj and Od

k
is less

than ". We now denote

E�i WD fti�1 < � � tig; E
�
j WD f� 2 O

m
j g; E˛k WD fX

˛
� 2 O

d
k g;

�" WD

nX
iD1

ti1E�
i
; E� WD E \E

�
i \E

�
j \E

˛
k ; where � D .i; j; k/:

(4.16)

For any � D .i; j; k/ such that E� ¤ ;, choose !� 2 E� such that

P
�
f� > t�g \E�

�
� "2P .E� /; where t� WD �.!

� /; x� WD X
˛
t�
.!� /: (4.17)

Moreover, since �.!� / 2 V .t� ; x� /, choose ˛� 2 At� such thatˇ̌
�.!� / � Y

t� ;x� ;˛
�

t�

ˇ̌
� ": (4.18)

We then construct Ǫ 2 A0 by: denoting !ts WD !s � !t , 0 � t � s � T ,

Ǫ t .!/ WD ˛t .!/1Œ0;�".!//.t/C 1Œ�".!/;T �.t/
hX
�

1E� .!/˛
�
t .!

t� /C a01Ec
i
;

where the summations are over all � D .i; j; k/ with i D 1; � � � ; n and j; k � 1, and a0 2 A is an
arbitrary value.
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Step 3. We now verify (4.15). First, for any � D .i; j; k/ such that E� ¤ ;, a.s. on E� we have
�" D ti � t� and, denoting .X� ; Y � ; Z� / WD .X t� ;x� ;˛

�

; Y t� ;x� ;˛
�

; Zt� ;x� ;˛
�

/,

X Ǫt D X
˛
t�
C

Z t

t�

b.s; X Ǫs ; ˛s/ds C

Z t

t�

�.s; X Ǫs ; ˛s/dBs; t 2 Œt� ; ti �;

X Ǫt D X
Ǫ
ti
C

Z t

ti

b.s; X Ǫs ; ˛
�
s .B

t� //ds C

Z t

ti

�.s; X Ǫs ; ˛
�
s .B

t� //dBs; t 2 Œti ; T �;

X�t D x� C

Z t

t�

b.s; X�s ; ˛
�
s .B

t� //ds C

Z t

t�

�.s; X�s ; ˛
�
s .B

t� //dBs; t 2 Œt� ; T �:

Since b; � are bounded, and jX˛t� � x� j � ", ti � t� � "
2, by standard SDE estimates we get

EFt�

h
sup

t��t�ti

jX Ǫt �X
�
t j
2
i
� C"2; and then EFt�

h
sup

ti�t�T

jX Ǫt �X
�
t j
2
i
� C"2: (4.19)

Similarly, note that

Y Ǫt D g.X
Ǫ
T /C

Z T

t

f .s; X Ǫs ; Y
Ǫ
s ; Z

Ǫ
s ; ˛

�
s .B

t� //ds �

Z T

t

Z Ǫs dBs; t 2 Œti ; T �;

Y Ǫt D Y
Ǫ
ti
C

Z ti

t

f .s; X Ǫs ; Y
Ǫ
s ; Z

Ǫ
s ; ˛s/ds �

Z ti

t

Z Ǫs dBs; t 2 Œt� ; ti �;

Y �t D g.X
�
T /C

Z T

t

f .s; X�s ; Y
�
s ; Z

�
s ; ˛

�
s .B

t� //ds �

Z T

t

Z�s dBs; t 2 Œt� ; T �:

Then, by (4.19) and standard BSDE estimates we have

EFt�

h
sup

ti�t�T

jY Ǫt � Y
�
t j
2
i
� C"2; and then EFt�

h
sup

t��t�ti

jY Ǫt � Y
�
t j
2
i
� C"2:

In particular, this implies that

jY Ǫt� � Y
�
t�
j � C"; a.s. on E� : (4.20)

By Assumption (4.4), one can easily see that Y � , Y Ǫ are bounded. Consider the BSDE:

QY �t D Y
�
t�
C

Z t�

t

f .s; x� ; QY
�
s ;
QZ�s ; a0/ds �

Z t�

t

QZ�s dBs; t 2 Œti�1; t� �: (4.21)

Note that Y �t� is deterministic, then so is QY �t and thus QZ�t D 0. Therefore,

sup
ti�1�t�t�

j QY �t � Y
�
t�
j �

Z t�

ti�1

jf .s; x� ; QY
�
s ; 0; a0/jds � C.ti � ti�1/ � C"

2:

Moreover, note that E� 2 F� and

Y Ǫt D Y
Ǫ
t�
C

Z t�

t

f .s; X Ǫs ; Y
Ǫ
s ; Z

Ǫ
s ; ˛s/ds �

Z t�

t

Z Ǫs dBs; t 2 Œti�1; t� �:
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Compare this with (4.21), by (4.20) and standard BSDE estimate we have

EF�

h
sup

��t�t�

jY Ǫt �
QY �t j

2
i
� C"2; a.s. on f� � t�g \E� :

Then

jY Ǫ� � Y
�
t�
j � jY Ǫ� �

QY �� j C j
QY �� � Y

�
t�
j � C"; a.s. on f� � t�g \E� :

This, together with (4.16) and (4.18), implies that, for a.e. ! 2 f� � t�g \E� ,

jY Ǫ� .!/ � �.!/j � jY
Ǫ
� .!/ � Y

�
t�
j C jY �t� � �.!

� /j C j�.!� / � �.!/j � C":

Note that fE�g form a partition of E and P .E/ D 1, then by (4.17) we have

P
�
jY Ǫ� � �j > C"

�
�

X
�

P
�
f� > t�g \E�

�
�

X
�

"2P .E� / D "
2:

Note again that Y Ǫ and � are bounded. Then

E
�
jY Ǫ� � �j

2
�
� C"2 C CP

�
jY Ǫ� � �j > C"

�
� C"2: (4.22)

Finally, note that Y Ǫt D Y
�;Y Ǫ� I˛
t , 0 � t � � . Then, by (4.22) and standard BSDE estimates we

have

E
h

sup
0�t��

jY Ǫt � Y
�;�I˛
t j

2
i
� C"2:

This clearly implies (4.15) and hence completes the proof.

5 Set valued HJB equations

We now derive the set valued HJB equation for V from the DPP (4.13). Introduce the Hamiltonian:
for .t; x; y/ 2 GV , z 2 Rm�d , 
 2 .Rd�d /m, a 2 A, � 2 .TV .t; x; y//

d ,

KV .t; x; y; a; �/ WD tr
�
�>@xnV .t; x; y/�.t; x; a/C

1

2
�>@ynV .t; x; y/�

�
nV .t; x; y/I

h0V .t; x; y; z; 
; a; �/ WD zb.t; x; a/C
1

2
tr .�>
�.t; x; a// �KV .t; x; y; a; �/I

hV .t; x; y; z; 
; a; �/ WD h
0
V .t; x; y; z; 
; a; �/C f

�
t; x; y; z�.t; x; a/C �; a

�
I

HV .t; x; y; z; 
/ WD sup
a2A;�2.TV .t;x;y//d

nV .t; x; y/ � hV .t; x; y; z; 
; a; �/I

(5.1)

where tr .�>
�/ 2 Rm with i -th component tr .�>
 i�/. Then our set valued HJB equation takes
the form:

LV .t; x; y/ D 0; 8.t; x; y/ 2 GV ; where

LV .t; x; y/ WD @tV .t; x; y/ � nV .t; x; y/CHV
�
t; x; y; @xV .t; x; y/; @xxV .t; x; y/

�
:

(5.2)

Equivalently, by (2.2), (2.19), (2.21), (2.22), we may rewrite the above equation:

rtrV C inf
a2A;�2.TV .t;x;y//d

h
rxrV � b C

1

2
tr
�
�>rxxrV� C 2�

>
rxyrV� C �

>
ryyrV �

�
�ryrV � f .t; x; y;�ryrV .rxrV /

>� C �; a/
i
D 0; .t; x; y/ 2 GV :

(5.3)
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Remark 5.1 (i) For the scalar case as in Remark 4.1, by (4.3) we have

Vb.t; x/ D fv.t; x/; v.t; x/g; n.t; x; v.t; x// D �1; n.t; x; v.t; x// D 1;
TV .t; x; v.t; x// D TV .t; x; v.t; x// D f0g:

In the neighborhood of y D v.t; x/, we have rV .t; x; y/ D v.t; x/ � y and n.t; x; v.t; x// D �1.
Then (5.3) reduces to the standard HJB equation for v:

rtv C inf
a2A

h
rxv � b C

1

2
tr
�
�>rxxv�

�
C f

�
t; x; v; .rxv/

>�; a
�i
D 0:

Similarly, in the neighborhood of y D v.t; x/, we have rV .t; x; y/ D y � v.t; x/ and
n.t; x; v.t; x// D 1. Then (5.3) reduces to the standard HJB equation for v:

rtv C sup
a2A

h
rxv � b C

1

2
tr
�
�>rxxv�

�
C f

�
t; x; v; .rxv/

>�; a
�i
D 0:

(ii) Although rV is scalar, we emphasize that (5.3) holds true only on GV , and the set GV is
in turn determined by the solution rV . So (5.3) is actually quite involved, and we can not apply the
standard PDE theory on it.

(iii) It is clear that V .T; x/ D fg.x/g is degenerate, so we do not require the smoothness of V

at T . See Definition 2.9 and the paragraph above it.

Remark 5.2 Note that KV relies on � quadratically, and the space of � is typically unbounded, so
in general HV could blow up and then the set valued PDE is not well defined.

(i) In the scalar case: m D 1, we have TV .t; x; y/ D f0g for all .t; x; y/ 2 GV . Then this issue
is trivial. Indeed, in this case the set valued PDE reduces back to the standard HJB equations, as
we saw in Remark 5.1 (i).

(ii) Form � 2, recall Remark 2.7 (iii) that @ynV D ryyrV is symmetric and 0 is an eigenvalue
with eigenvector n. At any fixed .t; x; y/ 2 GV , let �1 � � � � � �m�1 be the other eigenvalues.
When f has linear growth in z, which is implied by the Lipschitz continuity, and �1 > 0, then
clearly HV <1. In this case V .t; x/ is strictly convex.

(iii) When f has linear growth in z, one may easily derive from HV < 1 that �1 � 0. So,
unfortunately, our classical solution V has to be convex. Thus one should explore appropriate
notions of weak solutions in the noncovex case, which we will leave to future research.

(iv) When f has quadratic growth, this convexity is not required, as we will see in Example 5.3
below. We shall remark though such quadratic growth violates Assumption 4.4, which is assumed
for technical reasons and can be weakened.

Example 5.3 Consider a deterministic example where f; g and hence V are independent of x. Set
m D 2, A D fa 2 R2 W jaj � 1g, g D 0, and f D .f1; f2/> is specified at below:

f1.a; y/ D a1; f2.a; y/ D
2y1y2a1

1C y21
C .1C y21/a2:

Then V .t/ can be solved explicitly and is nonconvex when T � t > 1p
2

:

Vb.t/ D
n
Y.t; �/ W 8� 2 Œ0; 2��

o
; where

Y1.t; �/ WD .T � t / cos �; Y2.t; �/ WD .T � t /
�
1C .T � t /2 cos2 �

�
sin �:

(5.4)

21



We postpone its proof to Appendix.
We now turn to the wellposedness of (5.2). We first define classical solutions rigorously.

Definition 5.4 (i) Let C 1;20 .Œ0; T / � Rd IDm
2 / denote the set of V 2 C 1;2.Œ0; T / � Rd IDm

2 / such
that, for any T0 < T , the eigenvalue �1 of @yn.t; x; y/ in Remark 5.2 (ii) has a lower bound cT0 > 0
for all .t; x/ 2 Œ0; T0� �Rd , y 2 Vb.t; x/. That is,

tr
�
�>@ynV .t; x; y/�

�
� cT0 j�j

2
8.t; x/ 2 Œ0; T0� �Rd ; y 2 Vb.t; x/; � 2 TV .t; x; y/:(5.5)

This implies that HV .�; @xV ; @xxV / is finite and uniformly continuous whenever t � T0.
(ii) We say V 2 C

1;2
0 .Œ0; T /�Rd IDm

2 / is a classical solution to (5.2) if it satisfies (5.2) for all
.t; x/ 2 Œ0; T / �Rd and y 2 Vb.t; x/.

We shall provide an example in Example 6.4 below. We next establish a crucial estimate, whose
proof is postponed to Appendix.

Lemma 5.5 Let Assumption 4.4 hold and V be defined by (4.2). Assume V 2 C
1;2
0 .Œ0; T / �

Rd IDm
2 /. Fix T0 < T and x0 2 Rd . Let "; ı > 0 and ˛ 2 A0 be such that jrV .0; x0; Y

˛
0 /j �

", where .X˛; Y ˛; Z˛/ D .X0;x0;˛; Y 0;x0;˛; Z0;x0;˛/ are defined by (4.1). Then there exists a
constant CT0 , which may depend on T0 but not on "; ı; ˛, such that

P
�

sup
0�t�T0

jrV .t; X
˛
t ; Y

˛
t /j � ı

�
� CT0

r
"

ı
: (5.6)

In particular, if Y ˛0 2 Vb.0; x0/, then Y ˛t 2 Vb.t; X
˛
t /, 0 � t � T , a.s.

The main result of this section is the following theorem.

Theorem 5.6 Let Assumption 4.4 hold and V be defined by (4.2). Assume V 2 C
1;2
0 .Œ0; T / �

Rd IDm
2 /. Then V is a classical solution of (5.2) with terminal condition V .T; x/ D fg.x/g.

Proof It is clear that V .T; x/ D fg.x/g. Without loss of generality, we shall verify (5.2) only at
a fixed .0; x0; y0/ 2 GV , and for notational simplicity, in this proof we omit the supscripts 0;x0;y0
and the subscript V in r;n; � . We proceed in two steps.

Step 1. We first show that LV .0; x0; y0/ � 0. For this purpose, we fix an arbitrary a 2 A and let
Xa WD X0;x0;˛ be defined by (4.1) for constant control process ˛ � a. Moreover, we fix arbitrary
�; �i W Œ0; T � � � � Rm ! Rm, i D 1; � � � ; d , which are F -progressively measurable, bounded,
continuous in t , uniformly Lipschitz continuous in y, and �.t; !; y/; �i .t; !; y/ 2 TV .t; X

a
t .!/; y/

for all y 2 Vb.t; X
a
t .!//, for dt � dP -a.e. .t; !/. Denote � D .�1; � � � ; �d / and consider the SDE:

‡
a;�;�
t D y0 C

Z t

0

�
@tV C h

0
V .�; @xV ; @xxV ; a; �s/C �

�
.s; Xas ; ‡

a;�;�
s /ds

C

Z t

0

Œ@xV�.�; a/C �
�
.s; Xas ; ‡

a;�;�
s /dBs:

(5.7)

Applying the Itô formula Theorem 3.1 we have ‡a;�;�t 2 Vb.t; X
a
t /, for all 0 � t < T .

Now for any ı > 0 small, consider the BSDE (4.12) with terminal condition .ı; ‡a;�;�
ı

/:

Y
ı;a;�;�
t D ‡

a;�;�

ı
C

Z ı

t

f .s; Xas ; Y
ı;a;�;�
s ; Zı;a;�;�s ; a/ds �

Z ı

t

Zı;a;�;�s dBs; 0 � t � ı: (5.8)
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Since ‡a;�;�
ı

2 Vb.ı; X
a
ı
/, by the DPP (4.13) we see that Y ı;a;�;�0 2 V .0; x0/. Denote

�Y ıt WD Y
ı;a;�;�
t � ‡

a;�;�
t ; �Zıt WD Z

ı;a;�;�
t � Œ@xV�.�; a/C �

�
.t; Xat ; ‡

a;�;�
t /:

Then, by (5.7) and (5.8) we have

�Y ıt D

Z ı

t

h
@tV C hV .�; @xV ; @xxV ; a; �/C �

i
.s; Xas ; ‡

a;�;�
s /ds �

Z ı

t

�Zıs dBs

C

Z ı

t

h
f .s; Xas ; Y

ı;a;�;�
s ; Zı;a;�;�s ; a/ � f .s; Xas ; Y

ı;a;�;�
s ��Y ıs ; Z

ı;a;�;�
s ��Zıs ; a/

i
ds

D

Z ı

t

h
@tV C hV .�; @xV ; @xxV ; a; �/C �

i
.s; Xas ; ‡

a;�;�
s /ds �

Z ı

t

�Zıs dBs

C

Z ı

t

h
Qbs�Y

ı
s C Q�s�Z

ı
s

i
ds;

where Qb; Q� are appropriate F -progressively measurable bounded processes. Then, for the Q� defined
by (3.7), we have

Q�t�Y
ı
t D

Z ı

t

Q�s

h
@tV C hV .�; @xV ; @xxV ; a; �/C �

i
.s; Xas ; ‡

a;�;�
s /ds

�

Z ı

t

Q�s
�
�Zıs C�Y

ı
t Q�
�
� dBs:

In particular,

�Y ı0 D E
h Z ı

0

Q�s
�
@tV C hV .�; @xV ; @xxV ; a; �/C �

�
.s; Xas ; ‡

a;�;�
s /ds

i
: (5.9)

Given our conditions, it is clear that j�Y ı0 j � Cı, which implies that lim
ı!0

Y
ı;˛;�;�
0 D y0. Since

Y
ı;a;�;�
0 2 V .0; x0/ and y0 2 Vb.0; x0/, then

lim
ı!0

1

ı

�
n.0; x0; y0/ ��Y ı0

�
� 0:

Now by (5.9) and the desired continuity of Q�s; Xas ; ‡
a;�;�
s ; �s in s as well as the desired regularity

of all the involved functions in .x; y/, we have

0 � lim
ı!0

1

ı
E
h
n.0; x0; y0/ �

Z ı

0

Q�s

h
@tV C hV .�; @xV ; @xxV ; a; �/C �

i
.s; Xas ; ‡

a;�;�
s /ds

i
D lim

ı!0

1

ı

h
n.0; x0; y0/ �

Z ı

0

h
@tV C hV .�; @xV ; @xxV ; a; �/C �

i
.0; x0; y0/ds

i
D n.0; x0; y0/ �

h
@tV C hV .�; @xV ; @xxV ; a; �/

i
.0; x0; y0/;

where the last equality is due to the assumption � 2 TV . Now by the arbitrariness of a; � we obtain
LV .0; x0; y0/ � 0.
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Step 2. We next show that LV .0; x0; y0/ � 0. For this purpose, fix T0 < T , and throughout this
proof, the generic constant C may depend on T0. Since V 2 C 1;2.Œ0; T0� � Rd IDm

2 /, there exists
"0 > 0 such that r 2 C 1;2.OT0"0 .GV /IR/, where OT0"0 .GV / WD f.t; x; y/ 2 Œ0; T0� � Rd � Rm W

jr.t; x; y/j � "0g. Fix a sufficiently small constant " > 0. Since y0 2 Vb.0; x0/, there exists
˛ D ˛" 2 A0 such that

�.0; x0; Y
˛
0 / D y0 and jy0 � Y

˛
0 j � "

4;

where .X˛; Y ˛; Z˛/ D .X0;x0;˛; Y 0;x0;˛; Z0;x0;˛/ are defined by (4.1). Define

� WD �";˛ WD infft > 0 W jr.t; X˛t ; Y
˛
t /j � "

2
g ^ T0:

By Lemma 5.5 we have

P .� < T0/ � P
�

sup
0�t�T0

jr.t; X˛t ; Y
˛
t /j � "

2
�
� C

s
"4

"2
D C": (5.10)

Step 2.1. Introduce two random fields:

�t .y/ WD Z
˛
t � @xV�.t; X˛t ; y; ˛t /;

�t .y/ WD �
�
@tV C hV .�; @xV ; @xxV ; ˛t ; �t /

�
.t; X˛t ; y/:

(5.11)

Then we may rewrite the BSDE for .Y ˛; Z˛/ forwardly:

Y ˛t D Y ˛0 C

Z t

0

h
@tV C h

0
V .�; @xV ; @xxV ; ˛s; �/C �

i
.s; X˛s ; Y

˛
s /ds

C

Z t

0

�
@xV�.�; ˛s/C �

�
.s; X˛s ; Y

˛
s /dBs:

We remark that, if Y ˛t 2 Vb.t; X
˛
t / and �t .Y ˛t /; �t .Y

˛
t / are in the tangent space TV .t; X

˛
t ; Y

˛
t /,

then by the optimality of HV we have LV .t; X˛t ; Y
˛
t / � �n.t; X˛t ; Y ˛t / � �t .Y ˛t / D 0, which is

the desired inequality. In this and the next substeps, we shall prove these properties in approximate
sense.

Denote �˛t WD �.t; X
˛
t ; Y

˛
t /. By (3.3) and (3.4), similarly to (3.5) and (3.6) we have,

dr.t; X˛t ; Y
˛
t / D

h
r.t; X˛t ; Y

˛
t /
Qbt � n � �.t; X˛t ; �

˛
t /
i
dt

C

h
r.t; X˛t ; Y

˛
t / Q�t � n>�.t; X˛t ; �

˛
t /
i
dBt ; 0 � t � �;

(5.12)

where Qb; Q� are F -progressively measurable and satisfy: for some constant C D CT0 ,

j Q�t j � C; j Qbt j � C
�
1C jZ˛t j

�
: (5.13)

Recall the process Q� defined in (3.7), we have

r.0; x0; Y ˛0 / � Q��r.�; X˛� ; Y
˛
� / D

Z �

0

Q�sn � �.s; X˛s ; �
˛
s /ds C

Z �

0

Q�sn>�.s; X˛s ; �
˛
s /dBs: (5.14)
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Moreover, by Assumption 4.4 one can easily see that Y ˛ is bounded, then
R �^�
0 Z˛s dBs is a BMO

martingale, and thus there exist c0; C > 0, such that (cf. [23, Section 7.2])

E
h

exp
�
c0

Z �

0

jZ˛s j
2ds

�i
� C <1:

In particular, this implies that, for any p � 1, there exists a constant Cp > 0 such that

E
h

sup
0�t��

�
j Q�t j

p
C j Q�t j

�p
�i
� Cp: (5.15)

Applying the standard Itô formula on j Q�tr.t; X˛t ; Y ˛t /j2, by (5.12) we have

E
h Z �

0

j Q�sn>�.s; X˛s ; �
˛
s /j

2ds
i

D E
h
j Q��r.�; X˛� ; Y

˛
� /j

2
� jr.0; x0; Y ˛0 /j

2
C 2

Z �

0

Q�2s r.s; X˛s ; Y
˛
s /n � �.s; X

˛
s ; �

˛
s /ds

i
� C"4 C C"2E

�
sup
0�t��

j Q�t j
2

Z �

0

Œ1C jZ˛s j
2�ds

�
� C"2: (5.16)

Step 2.2. Introduce two processes

O�s WD �s.�
˛
s / � nn>�s.�˛s / 2

�
TV .s; X

˛
s ; �

˛
s /
�d
I

O�s WD �
�
@tV C hV .�; @xV ; @xxV ; ˛s; O�s/

�
.s; X˛s ; �

˛
s /:

(5.17)

By (5.2), (5.3), and by Step 1, we have

0 � �LV .s; X˛s ; �
˛
s / � n.s; X˛s ; �

˛
s / �
O�s: (5.18)

Then, by taking expectation on both sides of (5.14) we have

�E
h Z �

0

Q�sLV .s; X˛s ; �
˛
s /ds

i
� E

h Z �

0

Q�sn.s; X˛s ; �
˛
s / �
O�sds

i
� E

h Z �

0

Q�sn.s; X˛s ; �
˛
s / � �sds

i
C E

h Z �

0

Q�sj�s � O�sjds
i

D E
h
r.0; x0; Y ˛0 / � Q��r.�; X˛� ; Y

˛
� /
i
C E

h Z �

0

Q�sj�s � O�sjds
i
:

Recall Remark 2.7 (iii), we see that tr
�
.nn>�/>@yn.nn>�/

�
D 0. Then, by (5.1),

j�s � O�sj � C jn>�.s; X˛s ; �
˛
s /j;

and thus, by (5.16),

�E
h Z �

0

Q�sLV .s; X˛s ; �
˛
s /ds

i
� E

h Z �

0

Q�sn.s; X˛s ; �
˛
s / �
O�sds

i
� E

h
r.0; x0; Y ˛0 / � Q��r.�; X˛� ; Y

˛
� /
i
C CE

h Z �

0

Q�sjn>�.s; X˛s ; �
˛
s /jds

i
� C"2 C C

�
E
h Z �

0

j Q�sn>�.s; X˛s ; �
˛
s /j

2ds
i�1=2

� C": (5.19)
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Step 2.3. Fix another small constant ı > 0. Since LV � 0, by (5.10) we have

�LV .0; x0; y0/ D E
h
�
1

ı

Z �^ı

0

LV .0; x0; y0/ds �
.ı � �/C

ı
LV .0; x0; y0/

i
D �

1

ı
E
h Z �^ı

0

Q�sLV .s; X˛s ; �
˛
s /ds

i
�LV .0; x0; y0/E

h
.1 �

�

ı
/1f�<ıg

i
C
1

ı
E
h Z �^ı

0

�
Q�sLV .s; X˛s ; �

˛
s / �LV .0; x0; y0/

�
ds
i

�
C"

ı
C E

h
sup

0�t��^ı

ˇ̌
Q�tLV .t; X˛t ; �

˛
t / �LV .0; x0; y0/

ˇ̌i
:

Since V 2 C 1;2.Œ0; T0� � Rd IDm
2 /, HV is bounded and uniform continuous. Then, for some

modulus of continuity function � we have

�LV .0; x0; y0/ �
C"

ı
C CE

h
sup

0�t��^ı

�
j Q�t � 1j C �

�
ı C jX˛t � x0j C j�

˛
t � y0j

��i
: (5.20)

Recall (3.7), (5.13), and (5.15), we have

E
h

sup
0�t��^ı

j Q�t � 1j
i
� E

h
sup

0�t��^ı

�
. Q�t C 1/.j

Z t

0

Q�s � dBsj C

Z t

0

Œj Qbsj C
1

2
j Q�sj

2�ds
�i

� C
p
ı C C

�
E
h� Z �^ı

0

jZ˛t jdt
�2i� 12

� C
p
ı C C

p
ı
�
E
h Z T

0

jZ˛t j
2dt

i� 1
2
� C
p
ıI

E
h

sup
0�t��^ı

jX˛t � x0j
i
� C
p
ıI

E
h

sup
0�t��^ı

j�˛t � y0j
i
� C"2 C E

h
sup

0�t��^ı

jY ˛t � y0j
i

� C Œ"2 C
p
ı�C CE

h� Z �^ı

0

jZ˛t j
2dt

� 1
2

i
:

Then (5.20) implies

�LV .0; x0; y0/ � C
h"
ı
C
p
ı
i
C C�.ı C ı

1
3 /C

C

ı
1
3

E
h

sup
0�t��^ı

ŒjX˛t � x0j C j�
˛
t � y0j�

i
� C

h"
ı
C
p
ı C �.ı C ı

1
3 /C

"2 C
p
ı

ı
1
3

i
C
C

ı
1
3

E
h� Z �^ı

0

jZ˛t j
2dt

� 1
2

i
: (5.21)

Step 2.4. Recall (5.5) and (5.18). Then by (5.19) we have

C" � E
h Z �^ı

0

Q�sn.s; X˛s ; �
˛
s / �
O�sds

i
� E

h Z �^ı

0

Q�s
�cT0
2
j O�sj

2
� C j O�sj � C

�
ds
i
:

This, together with (5.15), implies that

E
h Z �^ı

0

Q�sj O�sj
2ds

i
� C Œ"C ı�: (5.22)
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By (5.11) and (5.17) we have

jZ˛t j � j�t .�
˛
t /j C C � j

O�t j C jn>�.t; X˛t ; �
˛
t /j C C:

Then, by (5.16), (5.22), and (5.15), we have

E
h� Z �^ı

0

jZ˛t j
2dt

� 1
2

i
� C
p
ı C CE

h� Z �^ı

0

Œj O�t j
2
C jn � �.t; X˛t ; �

˛
t /j

2�dt
� 1
2

i
� C
p
ı C CE

h�
sup
0�t��

Q��1t

Z �^ı

0

Q�t j O�t j
2dt

� 1
2 C

�
sup
0�t��

Q��2t

Z �

0

Q�2t jn � �.t; X
˛
t ; �

˛
t /j

2�dt
� 1
2

i
� C
p
ı C C

�
E
h Z �^ı

0

Q�t j O�t j
2dt C

Z �

0

Q�2t jn � �.t; X
˛
t ; �

˛
t /j

2dt
i� 1

2

� C
p
ı C C

�
"C ı C "2

� 1
2 � C Œ

p
"C
p
ı�:

Plug this into (5.21), we get

�LV .0; x0; y0/ � C
h"
ı
C
p
ı C �.ı C ı

1
3 /C

"2 C
p
ı

ı
1
3

i
C
C

ı
1
3

Œ
p
"C
p
ı�:

By first send "! 0 and then ı ! 0, we obtain �LV .0; x0; y0/ � 0.

6 The uniqueness of the classical solution

We now turn to the uniqueness of the classical solution, including the verification result.

Theorem 6.1 Let Assumption 4.4 hold and V be defined by (4.2).
(i) Assume U 2 C

1;2
0 .Œ0; T / �Rd IDm

2 / is a classical solution of (5.2) with terminal condition
V .T; x/ D fg.x/g. Then U D V , and consequently (5.2) has a unique classical solution with
terminal condition fg.x/g.

(ii) Assume further that the Hamiltonian HU .�; @xU ; @xxU/ has an optimal argument:

a� D IU
1 .t; x; y/ 2 A; �� D IU

2 .t; x; y/ 2 .TU .t; x; y//
d :

Moreover, recall Remark 2.1 and denote

QIU
3 .t; x; y/ WD �

h
@tU C hU .�; @xU ; @xxU ; IU

1 ; I
U
2 /
i
.t; x; y/I

IU
3 .t; x; y/ WD

QIU
3 .t; x; y/ � ŒnU � QI

U
3 �nU .t; x; y/I

(6.1)

and assume, for given .0; x0; y0/ 2 GU , the following SDE has a strong solution:

X�t D x0 C

Z t

0

b.�; IU
1 /.s; X

�
s ; ‡

�
s /ds C

Z t

0

�.�; IU
1 /.s; X

�
s ; ‡

�
s /dBsI

‡�t D y0 C

Z t

0

h
@tU C h

0
U .�; @xU ; @xxU ; IU

1 ; I
U
2 /C I

U
3

i
.s; X�s ; ‡

�
s /ds

C

Z t

0

Œ@xU�.�; IU
1 /C I

U
2 �.s; X

�
s ; ‡

�
s /dBs:

(6.2)
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Then, for ˛�t WD IU
1 .t; X

�
t ; ‡

�
t /, we have Y 0;x0;˛

�

t D ‡�t 2 Vb.t; X
�
t /, 0 � t � T , a.s. In

particular, Y 0;x0;˛
�

0 D y0.

Remark 6.2 From Step 2 in the proof, especially (6.6) below, we see that (6.2) actually becomes
the following simpler and more natural SDE:

X�t D x0 C

Z t

0

b.�; IU
1 /.s; X

�
s ; ‡

�
s /ds C

Z t

0

�.�; IU
1 /.s; X

�
s ; ‡

�
s /dBsI

‡�t D y0 �

Z t

0

f .�; @xU�.�; IU
1 /C I

U
2 ; I

U
1 /.s; X

�
s ; ‡

�
s /ds

C

Z t

0

Œ@xU�.�; IU
1 /C I

U
2 �.s; X

�
s ; ‡

�
s /dBs:

(6.3)

Remark 6.3 (i) Under the setting of above (ii), the ˛� is an optimal argument (at least locally) for
the scalarized optimization problem: sup˛2A0

n.0; x0; y0/ �Y 0;x0;˛0 . We refer to Subsection 7 below
for more detailed analysis along this line.

(ii) When � is nondegenerate, by (6.3) we have

‡�t D y0 C

Z t

0

h�
@xU�.�; IU

1 /C I
U
2

�
��1.�; IU

1 /
i
.s; X�s ; ‡

�
s /dX

�
s

�

Z t

0

h
f .�; @xU�.�; IU

1 /C I
U
2 ; I

U
1 /C

�
@xU�.�; IU

1 /C I
U
2

�
��1b.�; IU

1 /
i
.s; X�s ; ‡

�
s /ds

Then we may write ‡�t as a function of X�
Œ0;t�

, thus as a closed loop control ˛�t D ˛�.t; X�
Œ0;t�

/

is path dependent. Such path dependence appears often in multivariate setting. However, we note
that .X�; ‡�/ is jointly Markovian, so by adding the state ‡�, the optimal control ˛� becomes
Markovian, or more precisely state dependent. Therefore, the above verification theorem does help
to construct Markovian optimal controls in this sense.

Proof of Theorem 6.1. We proceed in three steps. Denote Tı WD T � ı for ı > 0 small.
Step 1. We first show that V .0; x0/ � U.0; x0/. By the same arguments, we can also show that

V .t; x/ � U.t; x/ for all .t; x/ 2 Œ0; T / �Rd .
Fix ı > 0 small and ˛ 2 A0. Denote .X˛; Y ˛; Z˛/ WD .X0;x0;˛; Y 0;x0;˛; Z0;x0;˛/. Since

V .T; x/ D fg.x/g D U.T; x/, by Assumption 4.4 and the continuity of U , there exists �ı 2
L2.FTı / such that �ı 2 Ub.Tı ; X

˛
Tı
/, a.s. and

E
�
jY ˛Tı � �ı j

2
�
� CE

�
jY ˛Tı � g.X

˛
T /j

2
C jg.X˛T / � g.X

˛
Tı
/j2 C j�ı � g.X

˛
Tı
/j2
�
! 0;(6.4)

as ı ! 0. Recall (4.12) and set .Y ˛;ı ; Z˛;ı/ WD .Y Tı;�ıI0;x0;˛; ZTı;�ıI0;x0;˛/. Then by the
standard BSDE estimates we have

lim
ı!0
jY
˛;ı
0 � Y ˛0 j D 0: (6.5)

As in (3.3), by standard Itô’s formula, we have

drU .t; X
˛
t ; Y

˛;ı
t / D ƒ.t; X˛t ; Y

˛;ı
t ; Z

˛;ı
t ; ˛t /dt C QZ

˛;ı
t dBt ; where

ƒ WD rtrU CrxrU � b � ryrU � f C
1

2
tr
�
�>rxxrU� C 2z

>
rxyrU� C z

>
ryyrUz

�
I

QZ˛;ı WD rxrU� C .ryrU /
>Z˛;ı :
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Denote

�
˛;ı
t WD �U .t; X

˛
t ; Y

˛;ı
t /; �

˛;ı
t WD Z

˛;ı
t � nU n>UZ

˛;ı
t :

Then, by (3.4) and since U is a classical solution of (5.2), we have

ƒ.t; X˛t ; �
˛;ı
t ; @xU� C �

˛;ı
t ; ˛t / D �nU �

h
@tU C hU

�
t; X˛t ; �

˛;ı
t ; @xU ; @xxU ; ˛t ; �

˛;ı
t

�i
� 0:

Note that, for appropriate processes Qb; Q� ,

ƒ.t; X˛t ; Y
˛;ı
t ; Z

˛;ı
t ; ˛t / �ƒ.t; X

˛
t ; �

˛;ı
t ; @xU� C �

˛;ı
t ; ˛t / D �

�
QbtrU C Q�t QZ

˛;ı
t

�
:

Here, due to the regularity of U 2 C 1;2.Œ0; Tı � � Rd IDm
2 /, as in (3.5) there exists a constant

Cı > 0, which may depend on ı, such that for 0 � t � Tı ,

j Qbt j � Cı Œ1C jZ
˛;ı
t j

2�; j Q�t j � Cı Œ1C jZ
˛;ı
t j�:

Then, for the Q� in (3.7) we have

d
�
Q�trU .t; X

˛
t ; Y

˛;ı
t /

�
D Q�tƒ.t; X

˛
t ; �

˛;ı
t ; @xU� C �

˛;ı
t ; ˛t /dt C Q�t . QZ

˛;ı
t � rU Q�t /dBt :

Since r.Tı ; X˛Tı ; Y
˛;ı
Tı
/ D 0, a.s. then,

rU .0; x0; Y
˛;ı
0 / D �E

h Z Tı

0

Q�tƒ.t; X
˛
t ; �

˛;ı
t ; @xU� C �

˛;ı
t ; ˛t /

i
� 0:

That is, Y ˛;ı0 2 U.0; x0/. Send ı ! 0, by (6.5) and the closedness of U.0; x0/, we have Y ˛0 2
U.0; x0/. Moreover, since ˛ 2 A0 is arbitrary, we obtain V .0; x0/ � U.0; x0/.

Step 2. We next prove (ii) and show that in this case U.0; x0/ � V .0; x0/. Indeed, consider
an arbitrary y0 2 Ub.0; x0/. First by the Itô formula Theorem 3.1 we see that ‡�t 2 Vb.t; X

�
t /,

0 � t � T , a.s. In particular, this implies ‡�T D g.X�T /. Note that, by the optimality of IU
1 ; I

U
2 ,

we have

hU .�; @xU ; @xxU ; IU
1 ; I

U
2 /.s; X

�
s ; ‡

�
s / D HU .�; @xU ; @xxU ; IU

1 ; I
U
2 /.s; X

�
s ; ‡

�
s /:

Since U satisfies the PDE (5.2) and by (5.1), at .s; X�s ; ‡
�
s / 2 GU we have

nU � QI
U
3 D 0I @tU C h

0
U .�; @xU ; @xxU ; IU

1 ; I
U
2 /C I

U
3 D �f .�; @xU�.�; IU

1 /C I
U
2 ; I

U
1 /:(6.6)

This implies that Y 0;x0;˛
�

t D ‡�t . In particular, y0 D ‡�0 D Y
0;x0;˛

�

0 2 V .0; x0/. Thus
Ub.0; x0/ � V .0; x0/, which implies that U.0; x0/ � V .0; x0/.

Step 3. We now prove U.0; x0/ � V .0; x0/ in the general case, without assuming the additional
conditions in (ii). Fix .0; x0; y0/ 2 GU and ı > 0. Since U 2 C 1;2.Œ0; Tı ��Rd IDm

2 /, we assume
rU is smooth in OTı"0 .GU / for some "0 > 0. In the rest of this proof, let Cı be a generic constant
which may depend on ı, more precisely on the cTı in (5.5) and the regularity of U on Œ0; Tı ��Rd .
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Since U satisfies (5.2), by (5.5) there exist Na0 2 A and N�0 2 .TU .0; x0; y0//
d such that

j N�0j � Cı and 0 � �nU �
�
@tU C hU .�; @xU ; @xxU ; Na0; N�

0/
�
.0; x0; y0/ < ı: (6.7)

Set �0 WD 0, ˛1t � Na0, 0 � t � Tı , and define

X1t D x0 C

Z t

0

b.s; X1s ; ˛
1
s /ds C

Z t

0

�.s; X1s ; ˛
1
s /dBs; 0 � t � Tı :

Recall Remark 2.1 and introduce random fields .�1; �1/ W Œ0; Tı � �� �Rm ! .Rm;Rm�d /:

�1t .y/ WD
N�0 � nU n>U N�

0.t; X1t ; y/; �1t .y/ WD
Q�1t .y/ � ŒnU �

Q�1t �nU .t; X
1
t ; y/;

where Q�1t .y/ WD �
�
@tU C hU .�; @xU ; @xxU ; ˛1; �1/

�
.t; X1t ; y/:

Then �1t .y/2TU .t; X
1
t ; y/, �

1
t .y/2 .TU .t; X

1
t ; y//

d , 8y 2 Ub.t; X
1
t /, and �1; �1 are uniformly

Lipschitz continuous in y, with a Lipschitz constant depending on ı. Consider the SDE:

‡1t D y0 C

Z t

0

h
@tU C h

0
U .�; @xU ; @xxU ; ˛1s ; �

1
s /C �

1
i
.s; X1s ; ‡

1
s /ds

C

Z t

0

h
@xU.s; X1s ; ‡

1
s /�.s; X

1
s ; ˛

1
s /C �

1
s .‡

1
s /
i
dBs:

(6.8)

By the Itô formula Theorem 3.1 we have ‡1t 2 Ub.t; X
1
t /, 0 � t � Tı . Note that (6.7) implies

nU .0; X
1
0 ; ‡

1
0 / �
Q�10 .‡

1
0 / � ı, and by our construction, ˛1; �1 and hence Q�1 are continuous in t . We

then set

�1 WD inf
˚
t > �0 W nU .t; X

1
t ; ‡

1
t / �
Q�1t .‡

1
t / � 2ı

o
^ Tı :

Next, on f�1 < Tıg, by measurable selection theorem, there exist F�1-measurable random
variables N̨1�1 2 A and N�1�1 2 .TV .�1; X

1
�1
; ‡1�1//

d such that

j N�1�1 j � Cı and 0 � �nU �
�
@tU C hU .�; @xU ; @xxU ; N̨1�1 ;

N�1�1/
�
.�1; X

1
�1
; ‡1�1/ < ı:

Set ˛2t � N̨
1
�1

, �1 � t � Tı , and define

X2t D X
1
�1
C

Z t

�1

b.s; X2s ; ˛
2
s /ds C

Z t

�1

�.s; X2s ; ˛
2
s /dBs; �1 � t � Tı :

Similarly introduce, for �1 � t � Tı ,

�2t .y/ WD
N�1�1 � nU n>U N�

1
�1
.t; X2t ; y/; �2t .y/ WD

Q�2t .y/ � ŒnU �
Q�2t �nU .t; X

2
t ; y/;

where Q�2t .y/ WD �
�
@tU C hU .�; @xU ; @xxU ; ˛2; �2/

�
.t; X2t ; y/;

and consider the SDE:

‡2t D ‡
1
�1
C

Z t

�1

h
@tU C h

0
U .�; @xU ; @xxU ; ˛2s ; �

2
s /C �

2
i
.s; X2s ; ‡

2
s /ds

C

Z t

�1

h
@xU.s; X2s ; ‡

2
s /�.s; X

2
s ; ˛

2
s /C �

2
s .‡

2
s /
i
dBs:
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Then ‡2t 2 Ub.t; X
2
t /, �1 � t � Tı , and we may set

�2 WD inf
˚
t > �1 W nU .t; X

2
t ; ‡

2
t / �
Q�2t .‡

2
t / � 2ı

o
^ Tı :

Repeat the arguments, we obtain a sequence .�n; ˛n; �n; Q�n; �n; Xn; ‡n/, n � 0, satisfying
the desired properties. We first show that �n D Tı for n large enough, a.s. Indeed, on Eı WD
\n�1f�n < Tıg, we have,

nU .�n; X�n ; ‡�n/ �
Q�n�n.‡�n/ � ı; nU .�nC1; X�nC1 ; ‡�nC1/ �

Q�n�nC1.‡�nC1/ D 2ı; 8n:

Then, for any n,

ıP .Eı/ � E
hˇ̌̌

nU .�nC1; X�nC1 ; ‡�nC1/ �
Q�n�nC1.‡�nC1/ � nU .�n; X�n ; ‡�n/ �

Q�n�n.‡�n/
ˇ̌̌i
:

Send n!1, by the desired regularity and in particular j�j � Cı , we obtain P .Eı/ D 0.
We now define

.˛t ; �t ; Xt ; ‡t ; �t / WD .˛
n
t ; �

n
t ; X

n
t ; ‡

n
t ; �

n
t /; t 2 Œ�n; �nC1/; n D 0; 1; � � � :

Note that XTı WD limt"Tı Xt and ‡Tı WD limt"Tı ‡t are well defined. Define

Zt WD @xU.t; Xt ; ‡t /�.t; Xt ; ˛t /C �t .‡t /; �t WD ŒnU �
Q�t �nU .t; Xt ; ‡t /; 0 � t < Tı :

Then, j�j � 2ı, and by (5.1) and (6.8) we have

‡t D y0 �

Z t

0

h
f .s; Xs; ‡s; Zs; ˛s/C �s

i
ds C

Z t

0

ZsdBs; 0 � t � Tı :

Equivalently, we may rewrite it backwardly:

‡t D ‡Tı C

Z Tı

t

h
f .s; Xs; ‡s; Zs; ˛s/C �s

i
ds �

Z Tı

t

ZsdBs; 0 � t � Tı :

Compare this with (4.12), by standard BSDE estimates we haveˇ̌
y0 � Y

Tı;‡Tı I0;x0;˛

0

ˇ̌2
D
ˇ̌
‡0 � Y

Tı;‡Tı I0;x0;˛

0

ˇ̌2
� CE

h Z Tı

0

j�sj
2ds

i
� Cı2: (6.9)

Finally, fix an arbitrary a� 2 A, and extend ˛ with ˛t � a�, t 2 ŒTı ; T �. Since V .T; x/ D

fg.x/g D U.T; x/, by Assumption 4.4 and the continuity of U , similarly to (6.4) we have

E
�
jY ˛Tı � ‡Tı j

2
�
� CE

h
jY ˛Tı � g.X

˛
T /j

2
C jg.X˛T / � g.X

˛
Tı
/j2 C j‡Tı � g.X

˛
Tı
/j2
i
� �.ı/;

for some modulus of continuity function �, independent of ˛. Then, by standard BSDE estimates
again,ˇ̌
Y
Tı;‡Tı I0;x0;˛

0 � Y ˛0
ˇ̌2
D
ˇ̌
Y
Tı;‡Tı I0;x0;˛

0 � Y
Tı;Y

˛
Tı
I0;x0;˛

0

ˇ̌2
� E

�
jY ˛Tı � ‡Tı j

2
�
� �.ı/:

Combine this with (6.9), we have

jy0 � Y
˛
0 j � Cı C

p
�.ı/:

Since Y ˛0 2 V .0; x0/ and ı > 0 is arbitrary, we obtain y0 2 V .0; x0/.
We conclude this section with a simple example where V is indeed a classical solution.
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Example 6.4 Set d D 1, m D 2, A D fa 2 R2 W jaj � 1g, and

b D 0; � D 1; f D f 0.t; x/C a;

where f 0 and g are smooth and bounded. Then it is straightforward to check that

V .t; x/ D
n
y 2 R2 W jy � w.t; x/j � T � t

o
;

where w D .w1; w2/> is the classical solution to the following heat equations:

rtwi C
1

2
rxxwi C f

0
i D 0; wi .T; x/ D gi .x/; i D 1; 2:

We shall prove in Appendix that V 2 C
1;2
0 .Œ0; T / �RID2

2 /, and the conditions in Theorem 6.1 (ii)
hold true. Then it follows from Theorems 5.6 and 6.1 that V is the unique classical solution of the
HJB equation (5.3).

7 An application: the moving scalarization

Recall Remark 4.2, in particular (4.4) and (4.6) for the mean variance optimization problem. This
problem is time inconsistent in the following sense. Consider the general setting (4.1) and (4.2).
Given .0; x0/ and ' 2 C.RmIR/, let ˛�

Œ0;T �
be an optimal control for the problem

V0 WD sup
˛2A0

'.Y
0;x0;˛
0 / D sup

y2V .0;x0/
'.y/: (7.1)

If we follow ˛� on Œ0; t � and denoteX�t WD X
0;x0;˛

�

t . Then ˛�
Œt;T �

is not optimal for the optimization
problem at t4:

sup
˛Œt;T �

'
�
Y
t;X�t ;˛Œt;T �
t

�
D sup
y2V .t;X�t /

'.y/:

It was proposed in [15] to find a so called dynamic utility function ˆ.t; xŒ0;t�; y/ such that
ˆ.0; x0; y/ D '.y/ and ˛�

Œt;T �
remains optimal for the alternative optimization problem

sup
˛Œt;T �

ˆ
�
t; X�Œ0;t�; Y

t;X�t ;˛Œt;T �
t

�
D sup
y2V .t;X�t /

ˆ
�
t; X�Œ0;t�; y

�
: (7.2)

In Subsection 7.2 below we will find such an ˆ for the mean variance problem explicitly. In the
next subsection we first consider the case that ' is linear.

4Here we are using the notations heuristically. Rigorously we shall either consider ess sup in the left side or consider
X� and ˛Œt;T � in a pathwise manner.
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7.1 The linear scalarization

When ' is linear: '.y/ D �0 � y for some �0 2 Rm, we require ˆ to be linear as well:
ˆ.t; xŒ0;t�; y/ D ƒ.t; xŒ0;t�/ �y. Thisƒ is exactly the moving scalarization proposed in [9]. That is,
we want to find ƒ such that ƒ.0; x0/ D �0 and ˛�

Œt;T �
is optimal for the problem:

sup
˛Œt;T �

ƒ.t; X�Œ0;t�/ � Y
t;X�t ;˛Œt;T �
t D sup

y2V .t;X�t /
ƒ.t; X�Œ0;t�/ � y: (7.3)

Our set valued HJB equation provides a solution to this interesting problem, provided that (5.2)
is wellposed in the sense of Theorem 6.1 (ii) and V .t; x/ is strictly convex. Consider a slightly more
general setting by letting � W Rd ! Rm be such that �.x0/ D �0. Assume without loss of generality
that j�.x/j D 1 for all x 2 Rd . Since V .0; x/ is compact and strict convex, we may find a unique
optimal argument y�.x/ 2 Vb.0; x/ for the problem: V.0; x/ WD supy2V .0;x/ �.x/ � y. Recalling
U D V , we construct X�; ‡�; ˛� as in Theorem 6.1 (ii) with initial data .0; x; y�.x// 2 GV .
Assume further that � 2 Rd is nondegenerate, then as in Remark 6.3 (ii) ‡� is FX

�

-progressively
measurable and hence there exists ƒ such that

ƒ.t; X�Œ0;t�/ D nV .t; X
�
t ; ‡

�
t /: (7.4)

We argue that this ƒ is a desired moving scalarization.
First, since �.x/ � y�.x/ D supy2V .0;x/ �.x/ � y and j�.x/j D 1, we see that

�.x/ D nV .0; x; y�.x// D ƒ.0; x/:

Next, from the construction in Theorem 6.1 (ii), it is clear that ‡�t D Y
t;X�t ;˛

�
Œt;T �

t . Then, since
V .t; X�t / is convex, by (7.4) we see that

ƒ.t; X�Œ0;t�/ � Y
t;X�t ;˛

�
Œt;T �

t D ƒ.t; X�Œ0;t�/ � ‡
�
t

D sup
y2V .t;X�t /

ƒ.t; X�Œ0;t�/ � y D sup
˛Œt;T �

ƒ.t; X�Œ0;t�/ � Y
t;X�t ;˛Œt;T �
t :

This exactly means ˛�
Œt;T �

is an optimal control for the dynamic optimization problem (7.3).

We remark that the mapping ƒ W Œ0; T � � C.Œ0; T �IRd /! Rm, which is path dependent in an
adapted way, is time consistent in the following sense. Consider the problem at time 0 with initial
condition .x; �/. Let X� and ƒ be as above, but denoted as X0;x;�;� and ƒ0;� to indicate their
dependence on the initial conditions. Now fix 0 < t < T , consider the problem on Œt; T � with initial
condition X0;x;�;�

Œ0;t�
andƒ0;�.t; �/, we can easily see that the moving scalarization we find following

the same procedure coincides with the original ƒ found at time 0:

X
t;X

0;x;�;�
Œ0;t�

;ƒ0;�.t;�/

s D X0;x;�;�s ; ƒt;ƒ
0;�.t;�/.s; �/ D ƒ0;�.s; �/; t � s � T:

Remark 7.1 When V .t; X�t / is nonconvex, as in Example 5.3, the ƒ in (7.4) can be viewed as a
local asymptotic moving scalarization in the following sense:

ƒ.t; X�Œ0;t�/ � ‡
�
t � ƒ.t; X

�
Œ0;t�/ � y � o.jy � ‡

�
t j/; 8y 2 V .t; X�t /I or equivalently,

ƒ.t; X�Œ0;t�/�Y
t;X�t ;˛

�
Œt;T �

t � ƒ.t; X�Œ0;t�/�Y
t;X�t ;˛Œt;T �
t � o

�ˇ̌
Y
t;X�t ;˛Œt;T �
t � Y

t;X�t ;˛
�
Œt;T �

t

ˇ̌�
;8˛Œt;T �:
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Remark 7.2 (i) When the ' in (7.1) is nonlinear, since V .0; x0/ is compact, one may still find an
optimal argument y0 2 V .0; x0/ for the problem in the right side of (7.1). We emphasize that it is
possible that y0 2 Vo.0; x0/ and such y0 may not be unique. Fix an arbitrary ˛0 2 A0 and Z0, for
example ˛0 � a0 2 A and Z0 � 0. Denote X0 WD X0;x0;˛

0

and

Y 0t D y0 �

Z t

0

f .s; X0s ; Y
0
s ; Z

0
s ; ˛

0
s /ds C

Z t

0

Z0s dBs;

�0 WD inf
˚
t � 0 W .t; X0t ; Y

0
t / 2 GV

	
:

It is clear that �0 � T and .�; X0� ; Y
0
� / 2 GV . Applying Theorem 6.1 (ii) on .�; X0� ; Y

0
� / (assuming

all the conditions are satisfied) and following the measurable selection theorem we may construct
˛� on Œ�0; T � with initial condition .�; X0� ; Y

0
� /. Then one can easily see that ˛0 ˚�0 ˛

� is an
optimal argument for the left side of (7.1). That is, Theorem 6.1 (ii) can help us to construct
an optimal control for (7.1) even when ' is nonlinear. However, in this case it is not clear how
to construct naturally a (nonlinear) moving scalarization ˆ as in (7.2). In particular, when '
has certain structure, for example the linear quadratic structure for the mean variance problem in
Remark 4.2, we may naturally expect ˆ to have the same structure, which will add the difficulty for
constructing a desired ˆ.

(ii) For some nonlinear ', it is possible to linearize it through certain transformation. Indeed,
let  be a diffeomorphism5 on Rm and set QV .t; x/ WD f .y/ W y 2 V .t; x/g. Then

sup
y2V .t;x/

'.y/ D sup
Qy2 QV .t;x/

Q'. Qy/; where Q'. Qy/ WD '. �1. Qy//:

If one can choose  such that Q' is linear, then one can apply the analysis in this subsection to find
a linear moving scalarization Q̂ for QV , which leads to a desired nonlinear moving scalarization
for the original V : ˆ.t; X�

Œ0;t�
; y/ WD Q̂ .t; X�

Œ0;t�
;  .y//. We remark that X� stands for X˛

�

for
some optimal control ˛�, so it remains the same after the transformation. However, in this case
nV .t; X

�
t ; ‡

�
t / does not lead to a desired moving scalarization.

7.2 The mean variance problem

In this subsection we find a desired moving scalarization for the mean variance problem in Remark
4.2, by employing the idea in Remark 7.2 (ii). We first remark that in this case V is not bounded.
However, since V is explicit as in (4.8), we may still apply the results in Theorem 6.1 (ii).

Theorem 7.3 Consider the optimization problem (4.4) and introduce:

ƒ.t; xŒ0;t�/ WD
�eT�t

eT � �.xt � x0/
8x 2 C.Œ0; T �;R/ s.t. sup

0�t�T

Œxt � x0� <
1

�
eT : (7.5)

Then the following dynamic mean variance problem is time consistent:

Vt WD ess sup
˛

n
EŒX˛T jFt � �

ƒ.t; X�
Œ0;t�

/

2
Var.X˛T jFt /

o
: (7.6)

5We refer to [12, Theorem A] for a characterization of diffeomorphisms.
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Here X� is the optimal trajectory for (4.4) and it satisfies sup0�t�T ŒX
�
t � x0� <

1
�
eT , a.s. More-

over, the optimal control and the optimal value are6:

˛�t D �X
�
t C x0 C

1

�
eT I

Vt D
1
2
.1C et�T /X�t C

1
2
.1 � et�T /x0 C

eT

2�
.1 � et�T /:

(7.7)

Proof In light of Remark 7.2 (ii), we introduce an obvious diffeomorphism

 .y1; y2/ WD .y1; Qy2/ WD .y1; y2 � jy1j
2/: (7.8)

Then, by (4.8) we have

QV .t; x/ WD
n
 .y/ W y 2 V .t; x/

o
D

n
.y1; Qy2/ W y1 2 R; Qy2 � �1.t/.y1 � x/

2
o
;

QVb.t; x/ D
n
.y1; Qy2/ W y1 2 R; Qy2 D �1.t/.y1 � x/

2
o
; where �1.t/ WD

1

eT�t � 1
:

(7.9)

Note that QV is convex, so the concern in Remark 7.1 is irrelevant and we are finding a true moving
scalarization. We shall denote Qy D .y1; Qy2/, and for Qy 2 QVb.t; x/, clearly it suffices to specify y1.
Moreover, recall (4.5) and denote QY WD  .Y / D .Y 1; QY 2/, by the standard Itô formula we have

Y t;x;˛;1s D X
t;x;˛
T �

Z T

s

Zt;x;˛;1r dBr ; QY
t;x;˛;2
s D

Z T

s

jZt;x;˛;1r j
2dr �

Z T

s

QZt;x;˛;2r dBr :

That is, in light of (4.1) and denoting Qz D .z1; Qz2/,

Qf .t; x; Qy; Qz; a/ D .0; jz1j
2/>: (7.10)

Given (7.9), one can easily compute that

Qn.t; x; Qy/ WD n QV .t; x; Qy/ D
1

�3

�
�2
�1

�
.t; x; Qy/; .t; x; Qy/ 2 G QV ;

where �2.t; x; Qy/ WD 2�1.t/.y1 � x/; �3 WD

q
1C j�2j2:

(7.11)

Next, fix .t; x; Qy/ 2 G QV and set ‡.x0/ WD
�
y1; �1.t/.y1�x

0/2
�>, x0 2 R. Clearly ‡.x0/ 2 QVb.x0/

for all x0 and d
dx0
‡.x0/

ˇ̌̌
x0Dx

D .0;��2.t; x; Qy//
>. Then by (2.19) and (2.14) we have

@x QV .t; x; Qy/ D
�
.0;��2/

>
� Qn
�
Qn.t; x; Qy/ D

�2

�23

�
�2
�1

�
.t; x; Qy/:

The right side of above and (7.11) provide natural extensions of Qn and @x QV on Œ0; T � � R � R2.
Then by (2.6) and (2.16) we may compute straightforwardly that, at .t; x; Qy/ 2 G QV ,

@xx QV D
2�1

�63

�
�2�2

1 � j�2j
2

�
; @x Qn D �

2�1

�53

�
1

�2

�
; @ Qy Qn D

2�1

�53

24 1
�2

35�1 �2
�
:

6The optimal control ˛� is the same as the static optimal control in [17, Theorem 3.3 (A)], with the correspondence
˛�t D X

�
t u
s
�.t; X

�
t /. However, our Vt is neither equal to the static optimal value nor to the dynamic optimal value in [17,

Theorem 3.3], except that at t D 0 it is equal to the static optimal value there.
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Moreover, as the tangent space is one dimensional, it is clear that

� 2 T QV .t; x; Qy/ ” 9�0 2 R such that � D �0

�
1

�2

�
:

Then, recalling (5.1) and (7.10), we may compute straightforwardly that

Qn � h QV .t; x; Qy; @x QV ; @xx QV ; a; �/

D Qn �
h
a@x QV C

a2

2
@xx QV C .0; ja.@x QV /1 C �1j

2/>
i
�

h
a�>@x QnC

1

2
�>@ Qy Qn�

i
D
�2

�23
a �

�1

�53
a2 �

1

�3
.
�22

�23
aC �0/

2
C
2�1

�33
a�0 �

�1

�3
�20

D �
1

�3

h
.1C �1/�

2
0 C

�1 C �
4
2

�43
a2 �

2.�1 � �
2
2/

�23
a�0 � �2a

i
:

This is quadratic in .a; �0/, and one may obtain immediately the optimal arguments:

I
QV
1 D a

�
D
.1C �1/�2

2�1
D .1C �1.t//.y1 � x/;

��0 D
�2.�1 � �

2
2/

2�1�
2
3

; and thus I
QV
2 D �

�
D
�2.�1 � �

2
2/

2�1�
2
3

�
1

�2

�
:

(7.12)

We next derive (6.2) for QV , with the solution denoted as .X�; Q‡�/ D .X�; ‡�;1; Q‡�;2/. Since
by Theorem 6.1 we have Q‡�t 2 QVb.t; X

�
t /, it suffices to specify the equations for .X�; ‡�;1/. Note

that, with .�/1 denoting the first component,�
@x QV�.�; I

QV
1 /C I

QV
2

�
1
.t; x; Qy/ D

�22

�23
�
.1C �1/�2

2�1
C
�2.�1 � �

2
2/

2�1�
2
3

D �1.t/.y1 � x/:

Note further that Qf1 D 0. Then, by recalling (6.3) in Remark 6.2 and (4.9), we have

X�t D x0 C

Z t

0

.1C �1.s//.‡
�;1
s �X�s /ds C

Z t

0

.1C �1.s//.‡
�;1
s �X�s /dBsI

‡
�;1
t D x0 C

1

�
ŒeT � 1�C

Z t

0

�1.s/.‡
�;1
s �X�s /dBs:

(7.13)

Thus:

‡
�;1
t �X�t D

1

�
ŒeT � 1� �

Z t

0

.1C �1.s//.‡
�;1
s �X�s /ds �

Z t

0

.‡�;1s �X�s /dBs: (7.14)

Clearly we can solve this and hence (7.13) explicitly. More relevantly for the moving scalarization,
as in Remark 6.3 (ii) we may rewrite (7.14) as

‡
�;1
t �X�t D

1

�
ŒeT � 1� �

Z t

0

1

1C �1.s/
dX�s �

Z t

0

�1.s/.‡
�;1
s �X�s /ds:
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Then, denoting �t WD e
R t
0 �1.s/ds D

eT�1
eT�et

,

�t .‡
�;1
t �X�t / D

1

�
ŒeT � 1� �

Z t

0

�s

1C �1.s/
dX�s D

1

�
ŒeT � 1� �

Z t

0

.1 � e�T /dX�s

D
1

�
ŒeT � 1� � .1 � e�T /X�t C .1 � e

�T /x0:

Thus

‡
�;1
t �X�t D

1

�
.eT � et / � .1 � et�T /.X�t � x0/: (7.15)

By abusing the notation ƒ with the previous subsection, our goal in this subsection is to find a
moving scalarization ƒt WD ƒ.t; X�Œ0;t�/ such that the following dynamic problem

sup
Qy2 QV .t;X�t /

�
y1 �

ƒt

2
Qy2

�
is time consistent: (7.16)

From the analysis in the previous subsection, this implies that .1;�ƒt
2
/> is parallel to Qn.t; X�t ; ‡�t /.

By (7.11), this implies that �ƒt
2
D

�1
�2.t;X

�
t ;‡
�
t /

. Thus, by (7.15),

ƒ.t; X�Œ0;t�/ D ƒt D
2

�2.t; X
�
t ; ‡

�
t /
D

eT�t � 1

‡
�;1
t �X�t

D
�eT�t

eT � �.X�t �X
�
0 /
:

This proves (7.5). We remark that, by (7.14) clearly ‡�;1t � X�t > 0, then it follows from (7.15)
that sup0�t�T ŒX

�
t � x0� <

1
�
eT , a.s.

For the original V , by (7.16) the following dynamic problem is time consistent:

sup
y2V .t;X�t /

ˆ.t; X�Œ0;t�; y/; where ˆ.t; X�Œ0;t�; y/ WD y1 C
ƒ.t; X�

Œ0;t�
/

2
jy1j

2
�

ƒ.t; X�
Œ0;t�

/

2
y2:

This is clearly equivalent to the time consistency of the dynamic problem (7.6).
Finally, plugging (7.15) into the first line of (7.12), we obtain the expression of ˛� in (7.7)

immediately. Moreover, by (7.9), (7.5), and (7.15) we have

Vt D ‡
�;1
t �

ƒt
2
Q‡
�;2
t D ‡

�;1
t �

eT�t � 1

2.‡
�;1
t �X�t /

� �1.t/.‡
�;1
t �X�t /

2

D
1
2
.‡
�;1
t �X�t /CX

�
t D

1
2
.1C et�T /X�t C

1
2
.1 � et�T /x0 C

eT

2�
.1 � et�T /:

This proves (7.7), and completes the proof of the theorem.

8 Further discussions

8.1 The case with nondegenerate terminal

As pointed out in Remark 4.3 (ii), given a general G W Rd ! Dm
0 , we may define V by (4.11).

This is equivalent to

V .t; x/ WD cl
˚
Y
T;�It;x;˛
t W ˛ 2 At ; � 2 L2.F t

T / s.t. � 2 G.X
t;x;˛
T /; a.s.

	
: (8.1)

Then we have
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Theorem 8.1 Let Assumption 4.4 (i), (ii) hold, and G is bounded and continuous. Assume the V

defined by (4.11) or (8.1) is in C 1;20 .Œ0; T / � Rd IDm
2 /. Then V is the unique classical solution of

the HJB equation (5.2) with terminal condition V .T; x/ D G.x/.

The proof is essentially the same as in the previous sections, we thus omit it. In particular, when
G.x/ 2 Dm

2 and V 2 C 1;2.Œ0; T � �Rd IDm
2 /, the proof is actually slightly easier.

8.2 Comparison with Soner-Touzi [22]

In the contexts of stochastic target problem, [22] derived a geometric equation to characterize the
reachable set of the problem. This work is very closely related to our problem. In this subsection we
provide some detailed analyses on the connection and the differences between the two works. We
shall introduce their approach, but in our contexts and using our notations, and all the discussions
are heuristic.

We first note that, the stochastic target problem (4.10) (or the more general one (4.11)) can be
rewritten equivalently as:

yV .t/ WD
n
.x; y/ 2 RdCm W 9.˛;Z/ such that Y t;x;y;˛;ZT D g.X

t;x;˛
T /; a.s.

o
:

Here .X t;x;˛; Y t;x;y;˛;Z/ becomes a d C m-dimensional controlled state process with control
.˛;Z/. It is clear that yV and our V are equivalent in the following sense:

yV .t/ D
˚
.x; y/ W x 2 Rd ; y 2 V .t; x/

	
; yVb.t/ D

˚
.x; y/ W x 2 Rd ; y 2 Vb.t; x/

	
I

and V .t; x/ D
˚
y W .x; y/ 2 yV .t/

	
; Vb.t; x/ D

˚
y W .x; y/ 2 yVb.t/

	
:

(8.2)

Then G yV D GV . Naturally we may define, for some " > 0,

n yV .t; x; y/ WD n yV .t/.x; y/ 2 RdCm; .t; x; y/ 2 G yV I

r yV .t; x; y/ WD r yV .t/.x; y/ 2 R; .t; x; y/ 2 O".G yV /:

The work [22] characterized the square of the distance function �.t; x; y/ WD 1
2
jr yV .t; x; y/j

2 by the
following PDE: denoting Oy WD .x; y/ and noting the time change in [22],

r Oyrt�.t; Oy/Cr Oy

h
F.t; Oy;r Oy�.t; Oy/;r Oy Oy�.t; Oy//

i
D 0; .t; Oy/ 2 G yV ; where

F.t; Oy;r Oy�;r Oy Oy�/ WD inf
.a;z/2N .t; Oy;r Oy�/

h
b.t; x; a/ � rx�.t; Oy/ � f .t; Oy; z; a/ � ry�.t; Oy/

C
1

2
tr
�
�>.t; x; a/rxx�.t; Oy/�.t; x; a/C 2z

>
rxy�.t; Oy/�.t; x; z/C z

>
ryy�.t; Oy/z

�i
;

N .t; Oy;r Oy�/ WD
n
.a; z/ W Œ�>.t; x; a/; z>�>Œ�>.t; x; a/; z>�r Oy�.t; Oy/ D 0

o
:

(8.3)

The main reason to consider the squared function is that, in the degenerate case r yV is typically
not smooth while jr yV j

2 is. In the nondegenerate case as in this paper, actually one may study r yV
directly.

We first note that OV is a function of t only, and thus it does not invoke the set valued Itô
formula as V .t; x/ does. While this may seem to be technically easier, the set valued Itô formula
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has independent interest and is one of the main contributions of this paper. For example, it provides
microstructure of the flow on the boundary surface, as we see in Theorem 6.1 (ii). We note that (8.3)
holds only on G OV , so it is also not a standard PDE.

The major difference is that, as we see in Example 8.2 below,

r yV .t; x; y/ ¤ rV .t; x; y/:

In general, recalling (8.2) we have

jr yV .t; x; y/j
2
D inf
. Qx; Qy/2 yVb.t/

�
jx � Qxj2 C jy � Qyj2

�
D inf
Qx2Rd

inf
Qy2Vb.t; Qx/

�
jx � Qxj2 C jy � Qyj2

�
D inf
Qx2Rd

�
jx � Qxj2 C jrV .t; Qx; y/j

2
�
� jrV .t; x; y/j

2

Example 8.2 Set d D m D 1 and consider time invariant set values:

V .x/ D Œx � 1; x C 1� � R; yV WD f.x; y/ W x 2 R; y 2 Œx � 1; x C 1�g � R2:

Clearly Vb.x/ D fx � 1; x C 1g. One can easily verify that,

rV .x; y/ D y � .x C 1/; for y � x C 1I and rV .x; y/ D .x � 1/ � y; for y � x � 1I

r yV .x; y/ D
y � .x C 1/
p
2

; for y � x C 1I and r yV .x; y/ D
.x � 1/ � y
p
2

; for y � x � 1:

We also observe directly from above that, although rV D r yV D 0 on GV D G yV , their derivatives
are in general not equal.

Consequently, although both (5.3) and (8.3) characterize the same set GV D G yV , the two
equations are fundamentally different. This is partially explained by the above observation that rV

and r yV have different derivatives on GV . At below we provide more detailed calculation for the set
valued heat equation in Example 2.8 (ii), but with d D m D 1.

Example 8.3 Set d D m D 1, b D 0, � D 1, f D 0, and the terminal G.x/ D Œ� .x/;  .x/�,
where  W R! .0;1/ is smooth. Then, similar to Example 2.8 (ii), we have

V .t; x/ D Œ�u.t; x/; u.t; x/�; Vb.t; x/ D f�u.t; x/; u.t; x/g;

where u is the unique classical solution of the heat equation

@tuC
1

2
@xxu D 0; u.T; x/ D  .x/: (8.4)

We shall prove in Appendix that yr WD r yV satisfies the following equation:

rtyrC
1

2

h
rxxyr � 2rxyyr

rxyr
ryyr
Cryyyr

ˇ̌rxyr
ryyr

ˇ̌2i
D 0; on G yV : (8.5)
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In this scalar case, by Remark 5.1 (i) we see that the set valued HJB equation (5.3) reduces back
to the standard PDE for v.t; x/ D u.t; x/ and v.t; x/ D �u.t; x/, both of which identify with the
heat equation (8.4). So (5.3) is indeed a natural extension of the HJB equation to the multivariate
case. The equation (8.5), however, is quite different from (8.4). So in this sense, it is more natural
to study (5.3) than to study (8.3).

Another advantage of (5.3) is that, as we saw in Section 7, the normal vector nV .t; X
�
t ; ‡

�
t /

provides naturally a moving scalarization for the time inconsistent multivariate optimization prob-
lem. The vector n yV (at certain optimal paths) does not serve for this purpose. In fact, n yV 2 RdCm,
while a moving scalarization ƒ is by nature m-dimensional.

Finally, we remark that [22, Theorem 2.1] showed that yV is the unique classical solution of
(8.3) under the existence of optimal controls, in the same spirit of our Theorem 6.1 (ii). We instead
proved the existence and uniqueness under weak conditions in Theorems 5.6 and 6.1 (i).

8.3 Comparison with Ararat-Ma-Wu [1]

Mainly motivated by dynamic set valued risk measures for multi-asset or network-based financial
models, [1] studied the following set valued BSDE:

Yt D E
h
G.BT /C

Z T

t

F.s; Bs;Ys/ds
ˇ̌
Ft

i
: (8.6)

Here, denoting by Dm
cc the space of convex compact sets D 2 Dm

0 , the terminal G W Rd ! Dm
cc ,

and the driver F W Œ0; T � � Rd � Dm
cc ! Dm

cc (abusing the notation F here). We note that [1]
actually allows G and F to depend on the paths of B . By relying on the sophisticated set valued
stochastic analysis, especially the Hukuhara difference, [1] established the wellposedness of the
above set valued BSDE. The general case that F depends on Z, and the martingale representation
with the term ZtdBt seem to be a quite remote goal.

Formally, the set valued BSDE (8.6) is associated with our set valued HJB equation (5.2) in the
case x0 D 0, b D 0, � D 1, f D f .t; x; y; a/. Then X D B , and we may naturally define

Yt WD V .t; Bt /; F.t; x;D/ WD
˚
f .t; x; y; a/ W y 2 D; a 2 A

	
: (8.7)

In the linear case: f D f .t; x; a/ and thus F.t; x/ D
˚
f .t; x; a/ W a 2 A

	
is independent of D, the

random set valued process Yt WD V .t; Bt / indeed satisfies (8.6) in the sense of [1].
However, when f depends on y, the Y ;F in (8.7) do not satisfy (8.6). That is, (8.6) is not the

stochastic counterpart of (5.2). The reason is the same as in Remark 2.3 (ii). In (4.1), the Y in
the left side and that in the right side of the BSDE are required to be the same process. In (8.6),
however, one allows to consider different selectors for the Y in the left side and that in the right side
of the equation. Consequently, the solutions to (5.2) and to (8.6) are typically not equal. We shall
remark that, the applications mentioned in Introduction typically fall into our framework, although
technically many of them are not covered by the current form of our HJB equation (5.2).

A Some technical proofs

Proof of Proposition 2.4. Again we denote r;n for notational simplicity. We prove it only for
x > x0. Fix x1 > x0. Without loss of generality, we assume � is absolutely continuous in
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x 2 Œx0; x1� with appropriate derivative function � 0, as otherwise the length of � would be1. Thus
we have

�.x/ D y0 �

Z x

x0

� 0. Qx/d Qx;

Note that r.x; �.x// D 0. Then, for Lebesgue-a.e. x,

0 D
d

dx
r.x; �.x// D rxr.x; �.x// � ryr.x; �.x// � � 0.x/ D rxr.x; �.x// � n.x; �.x// � � 0.x/;

and thus

�.x/ WD � 0.x/ � rxr n.x; �.x// 2 TV .x; �.x//:

Therefore,

L� .x0; x1/ D

Z x1

x0

q
1C j� 0.x/j2 dx D

Z x1

x0

q
1C

ˇ̌
rxr n.x; �.x//C �.x/

ˇ̌2
dx

D

Z x1

x0

q
1C

ˇ̌
rxr.x; �.x//

ˇ̌2
C j�.x/j2 dx �

Z x1

x0

q
1C

ˇ̌
rxr.x; �.x//

ˇ̌2
dx

This implies that

lim
x1#x0

1

x1 � x0

h
L‡ .x0; x1/ � L� .x0; x1/

i
� lim
x1#x0

1

x1 � x0

h Z x1

x0

q
1C

ˇ̌
rxr.x; ‡.x//

ˇ̌2
dx �

Z x1

x0

q
1C

ˇ̌
rxr.x; �.x//

ˇ̌2
dx
i

� lim
x1#x0

1

x1 � x0

h Z x1

x0

ˇ̌q
1C

ˇ̌
rxr.x; ‡.x//

ˇ̌2
�

q
1C

ˇ̌
rxr.x0; y0/

ˇ̌2ˇ̌
dx

C

Z x1

x0

ˇ̌q
1C

ˇ̌
rxr.x; �.x//

ˇ̌2
�

q
1C

ˇ̌
rxr.x0; y0/

ˇ̌2ˇ̌
dx
i
D 0:

Proof of Lemma 2.6. Recall (2.2) and consider the natural extension yn D ryr. By (2.19), (2.17),
and (2.16) we have, for i; j D 1; � � � ; d , and .t; x; y/ 2 GV ,

@xixjV .t; x; y/ D �@xi
�
rxj rn

�
.t; x; y/ D �

h
@xi .rxj r/nCrxj r@xin

i
.t; x; y/

D �

h
rxixj rCrxi rrxjyr � n

i
n.t; x; y/ � rxj r@xin.t; x; y/: (A.1)

Recall (2.2), at .t; x; y/ 2 O".GV / we have

rxjyr � ryr D
1

2
rxj

�
jryrj2

�
D 0:

In particular, rxjyr � n.t; x; y/ D 0 for .t; x; y/ 2 GV . Plugging this into (A.1) we obtain (2.21)
immediately.
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Moreover, again considering the extension yni D ryi r, by (2.16) and (2.6) we have

@xn
i
D rxyi r � rxr.ryiyr � n/; @yni D ryiyr � .ryiyr � n/n:

Similarly, by (2.2) we have ryiyr � n D 0, which implies (2.22) immediately.

Proof of Example 5.3. We first prove (5.4). Denote

Qf1.a; y/ WD a1; Qf2.a; y/ WD a2; QY ˛t D

Z T

t

Qf .˛s; QY
˛
s /ds:

Then one can easily check that

QV .t/ WD
˚
QY ˛t W ˛ 2 At

	
D
˚
Qy 2 R2 W j Qyj � T � t

	
;

QVb.t/ WD
˚
Qy 2 R2 W j Qyj D T � t

	
D
˚
.T � t /

�
cos �; sin �

�>
W � 2 Œ0; 2�/

	
:

(A.2)

Consider a function  W R2 ! R2 and set

Y ˛t WD  .
QY ˛t /; where  1. Qy/ WD Qy1;  2. Qy/ WD Œ1C j Qy1j

2� Qy2:

Then we have

dY
˛;1
t D d QY

˛;1
t D �˛1t dt D �f1.˛t ; Y

˛
t /dt I

dY
˛;2
t D 2 QY

˛;1
t
QY
˛;2
t d QY

˛;1
t C Œ1C j QY

˛;1
t j

2�d QY
˛;2
t D �

h
2 QY

˛;1
t
QY
˛;2
t ˛1t C Œ1C j

QY
˛;1
t j

2�˛2t

i
dt

D �

h 2Y ˛;1t Y
˛;2
t

1C jY
˛;1
t j

2
˛1t C Œ1C jY

˛;1
t j

2�˛2t

i
dt D �f2.˛t ; Y

˛
t /dt:

That is, Y ˛ satisfies (4.1) for given f . Therefore, V .t/ D
˚
 . Qy/ W Qy 2 QV .t/

	
. Note further that

 1. Qy1/ D Qy1, and  2 is strictly increasing in Qy2. It is clear that

Vb.t/ D
˚
 . Qy/ W Qy 2 QVb.t/

	
:

Plug (A.2) into it, we obtain (5.4) immediately.
We next analyze the convexity of V .t/. Assume for simplicity that t D 0. Note that

QVb.0/ D
n�
y1;

q
T 2 � jy1j2

�
;
�
y1;�

q
T 2 � jy1j2

�
W jy1j � T

o
I

Vb.0/ D
n�
y1; '.y1/

�
;
�
y1;�'.y1/

�
W jy1j � T

o
; where '.y1/ WD Œ1C jy1j2�

q
T 2 � jy1j2:

One may compute straightforwardly that:

'”.y1/ D
6jy1j

4 � 9T 2jy1j
2 C 2T 4 � T 2

.T 2 � jy1j2/
3
2

; jy1j < T:

Note that

sup
jy1j<T

�
6jy1j

4
� 9T 2jy1j

2
�
D 0:
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So when T � 1p
2

and thus 2T 4 � T 2 � 0, we have '”.y1/ � 0 for jy1j < T , and in this case

V .0/ is indeed convex. However, when T > 1p
2

, we find that '”.y1/ < 0 for jy1j � T , but

'”.0/ D 2T 4�T 2

T 3
> 0, then V .0/ is nonconvex.

Proof of Lemma 5.5. Denote

�ı WD infft � 0 W jr.t; X˛t ; Y
˛
t /j � ıg ^ T0;

and consider the linear BSDE with solution pair .�; ˇ/:

�t D 1f�ı�T0g �
Z T0

t

ˇsdBs; 0 � t � T0;

where � 2 R, ˇ 2 R1�d . It is clear that j�j � 1, ˇt D 0 for �ı � t � T0, and
R �
0 ˇsdBs is an BMO

martingale. Thus,

E
h

exp
�
c0

Z T0

0

jˇt j
2dt

�i
� C0 <1; for some c0; C0 > 0:

For n � 1, we truncate ˇ by n and denote it as ˇn. Define

�nt WD �0 C

Z t

0

ˇns dBs:

Then it is obvious that, for any p � 1,

E
�

sup
0�t�T0

j�nt j
p
�
� Cp <1I and cnp WD

�
E
�

sup
0�t�T0

j�nt � �t j
p
�� 1p
! 0; as n!1:(A.3)

Introduce two random fields �n.t; !; y/ and �n.t; !; y/:

�nij .t; y/ WD �

mX
kD1

Z 1

0

rzkj f
i .t; X˛t ; Y

˛
t ; Z

˛
t C �yˇ

n
t ; ˛t /ykd� I

�ni .t; y/ WD �

Z 1

0

h
ryf

i
� y C tr ..@zf i />�n.t; y//

i
�
t; X˛t ; Y

˛
t C ��

n
t y;Z

˛
t C yˇ

n
t C ��

n
t �
n.t; y/; ˛t

�
d� I

where �n D Œ�nij �1�i�m;1�j�d 2 Rm�d , �n D Œ�ni �1�i�m 2 Rm. One can easily verify that

�n.t; y/ˇnt WD f .t; X
˛
t ; Y

˛
t ; Z

˛
t ; ˛t / � f .t; X

˛
t ; Y

˛
t ; Z

˛
t C yˇ

n
t ; ˛t /I

�nt �
n.t; y/ WD f .t; X˛t ; Y

˛
t ; Z

˛
t C yˇ

n
t ; ˛t / � f .t; X

˛
t ; Y

˛
t C �

n
t y;Z

˛
t C yˇ

n
t C �

n
t �.t; y/; ˛t /:

Moreover, by Assumption 4.4 (ii) we have

j�n.t; y/j � C jyj; j�n.t; y/j � C jyjI

j�n.t; y/ � �n.t; Qy/j � Cn
�
1C jyj

�
jy � Qyj;

j�n.t; y/ � �n.t; Qy/j � Cn
�
1C jyj C j�nt j C j�

n
t jjyj

2
�
jy � Qyj:

(A.4)
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Next, consider the following SDE:

�nt WD �nV .0; x0; �.0; x0; Y
˛
0 //C

Z t

0

�n.s; �ns /ds C

Z t

0

�n.s; �ns /dBs;

where � > 0 is a small number which will be determined later. By the standard stopping arguments
for stochastic Lipschitz continuous coefficients, and by the uniform linear growth in the first line of
(A.4), the above SDE is wellposed, and for any p � 1,

E
h

sup
0�t�T0

j�nt j
p
i
� Cpj�j

p; (A.5)

where Cp does not depend on n.
Denote

QY nt WD Y
˛
t C �

n
t �
n
t ;

QZnt WD Zt C �
n
t �
n
t C �

n
t ˇ
n
t :

Then by the standard Itô formula we have

QY nt D Y
˛
�ı
C �n�ı�

n
�ı
C

Z �ı

t

f .s; X˛s ;
QY ns ;
QZns ; ˛s/ds �

Z �ı

t

QZns dBs:

Moreover, introduce the BSDE

OY nt D Y
˛
�ı
C �n�ı�

n
�ı

1n
j�n�ı j�2;j�

n
�ı
j< ı
2

o C Z �ı

t

f .s; X˛s ;
OY ns ;
OZns ; ˛s/ds �

Z �ı

t

OZns dBs:

By (A.3), (A.5), and noting that j��ı j � 1, it follows from standard BSDE estimates that

j OY n0 �
QY n0 j

2
� CE

hˇ̌
�n�ı�

n
�ı

ˇ̌2�1n
j�n�ı���ı j>1

o C 1n
j�n�ı j�

ı
2

o�i
� CE

hˇ̌
�n�ı�

n
�ı

ˇ̌2
j�n�ı � ��ı j C

1

ı2
j�n�ı j

2
j�n�ı j

4
i
� Ccn2 C C

j�j4

ı2
:

Thus

j OY n0 �
QY n0 j � C

�q
cn2 C

j�j2

ı

�
: (A.6)

Note that

OY n�ı D Y
˛
�ı
C �n�ı�

n
�ı

1n
j�n�ı j�2;j�

n
�ı
j< ı
2

o:
On fj�n�ı j � 2; j�

n
�ı
j < ı

2
gc , we have OY n�ı D Y ˛�ı 2 V .�ı ; X

˛
�ı
/. On fj�n�ı j � 2; j�

n
�ı
j < ı

2
g, noting

again that Y ˛�ı 2 V .�ı ; X
˛
�ı
/, we have rV .�ı ; X

˛
�ı
; Y ˛�ı / D �ı and j�n�ı�

n
�ı
j � ı, then OY n�ı D Y ˛�ı C

�n�ı�
n
�ı
2 V .�ı ; X

˛
�ı
/. So in both cases OY n�ı 2 V .�ı ; X

˛
�ı
/. Then by DPP (4.13) we have OY n0 2

V .0; x0/. Thus, by (A.6),

rV .0; x0; QY
n
0 / � j

QY n0 �
OY n0 j � C

�q
cn2 C

j�j2

ı

�
:
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On the other hand, note that QY n0 D Y
˛
0 C �0�nV .0; x0; �.0; x0; Y

˛
0 //, for �0� small we have

rV .0; x0; QY
n
0 / D rV .0; x0; Y

˛
0 /C �0�:

Thus

�0� D rV .0; x0; QY
n
0 / � rV .0; x0; Y

˛
0 / � C

�q
cn2 C

j�j2

ı

�
C ":

Send n!1 and set � WD
p
"ı, we obtain (5.6):

P .�ı � T0/ D �0 � C
�

ı
C
"

�
D C

r
"

ı
:

Finally, if Y ˛0 2 Vb.0; x0/, then " D 0. We see that P .�ı � T0/ D 0 for all ı > 0 and all
T0 < T . This implies immediately that Y ˛t 2 Vb.t; X

˛
t /, 0 � t < T , a.s. Moreover, note that

Y ˛T D g.X
˛
T / and V .T; x/ D fg.x/g, we have Y ˛T 2 Vb.T;X

˛
T / as well.

Proof of Example 6.4. As usual we drop the subscript V in r and n.
(i) We first show that V 2 C

1;2
0 .Œ0; T / � RID2

2 /. Fix ı > 0 and denote Tı WD T � ı. By
Example 2.8 we have, with u.t; x/ D T � t � ı there for t 2 Œ0; Tı �,

r.t; x; y/ D jy � w.t; x/j � .T � t /:

Then it is clear that V 2 C 1;2.Œ0; Tı � �RID2
2 /. By (2.24), for jy � w.t; x/j D T � t , we have

n D
y � w

T � t
I @tV D

�
rtw � n � 1

�
nI @xV D

�
rxw � n

�
nI

@xn D
1

T � t

�
� rxw C Œn � rxw�n

�
; @yn D

1

T � t

�
I2�2 � nn>

�
I

@xxV D �
1

T � t

h�
jrxwj

2
� rxxw � nC jrxw � nj2

�
nC Œrxw � n�

�
rxw � .rxw � n/n

�i
:

In particular, cT0 D
1
T

in (5.5), and thus V 2 C
1;2
0 .Œ0; T / �RID2

2 /.
(ii) We next verify the conditions in Theorem 6.1 (ii). For any a 2 A and � 2 TV .t; x; y/, by

(5.1) we have: at .t; x; y/ 2 GV ,

h0V .t; x; y; @xV ; @xxV ; a; �/ D
1

2
@xxV �

h
� � @xnC

1

2
�>@yn�

i
n

D �
1

2.T � t /

h�
jrxwj

2
� rxxw � nC jrxw � nj2

�
nC Œrxw � n�

�
rxw � .rxw � n/n

�i
�

1

T � t

h
� � � rxw C

1

2
j�j2

i
n:

Thus

n � hV .t; x; y; @xV ; @xxV ; a; �/ D n � h0V .t; x; y; @xV ; @xxV ; a; �/C n � Œf 0.t; x/C a�

D �
1

2.T � t /

h
jrxwj

2
� rxxw � nC jrxw � nj2 � 2� � rxw C j�j2

i
C n �

�
f 0 C a

�
D �

1

2.T � t /

h
j� � rxwj

2
� rxxw � nC jrxw � nj2

i
C n �

�
f 0 C a

�
:
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Recall jaj � 1, then clearly the optimal arguments are:

a� D IV
1 .t; x; y/ WD n.t; x; y/; �� D IV

2 .t; x; y/ WD rxw � Œrxw � n�n:

Together with (6.1), this implies further that

QIV
3 WD �

h
@tV C h

0
V .�; @xV ; @xxV ; IV

1 ; I
V
2 /C f

0
C IV

1

i
D �

�
rtw � n � 1

�
nC

1

T � t

�
� � � rxw C

1

2
j�j2

�
n � Œf 0 C n�

C
1

2.T � t /

h�
jrxwj

2
� rxxw � nC jrxw � nj2

�
nC Œrxw � n�

�
rxw � .rxw � n/n

�i
I

IV
3 WD �f

0
C Œn � f 0�nC

1

2.T � t /
Œrxw � n�

�
rxw � .rxw � n/n

�
:

Plug IV
1 ; I

V
2 ; I

V
3 into (6.2), clearly the resulted SDE is wellposed.

Proof of Example 8.3. We now compute the equation (8.3) in this case. First,

N .t; x; y;rx�;ry�/ D
˚
.a; z/ W Œ1; z�>Œrx�C zry�� D 0

	
D

˚
.a; z/ W z D �

rx�

ry�

	
D
˚�
a;�
rxyr.t; x; y/
ryyr.t; x; y/

�	
:

Then, recalling � D 1
2
jyrj2,

F D
1

2

h
rxx� � 2rxy�

rxyr
ryyr
Cryy�

ˇ̌rxyr
ryyr

ˇ̌2i
.t; x; y/

D
1

2

h
yrrxxyrC jrxyrj2 � 2ŒyrrxyyrCrxyrryyr�

rxyr
ryyr
C ŒyrryyyrC jryyrj2�

ˇ̌rxyr
ryyr

ˇ̌2i
.t; x; y/

D
1

2
yr
h
rxxyr � 2rxyyr

rxyr
ryyr
Cryyyr

ˇ̌rxyr
ryyr

ˇ̌2i
.t; x; y/:

Note further that yr D 0 on GV . Then, for .t; x; y/ 2 GV , we have

rxF D
1

2
rxyr

h
rxxyr � 2rxyyr

rxyr
ryyr
Cryyyr

ˇ̌rxyr
ryyr

ˇ̌2i
.t; x; y/I

ryF D
1

2
ryyr

h
rxxyr � 2rxyyr

rxyr
ryyr
Cryyyr

ˇ̌rxyr
ryyr

ˇ̌2i
.t; x; y/:

On the other hand, note that rt� D yrrtyr. Then, again at .t; x; y/ 2 GV ,

rxrt� D rxyrrtyr; ryrt� D ryyrrtyr:

Plug these into (8.3), we obtain (8.5) immediately.
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