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Set Valued Frameworks

e V : parameters (t,x, p,---) — collections

Geometric Surface Evolutions {GtV(t) = h(t,y,n, ayn)]
e Mean curvature flows, crystal formations, image processing

Stochastic Viability & Target Problems

Dynamic Risk Measures

N-player Games

Multivariate Control Problems
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Multivariate Control Problem & Mean-field Game

Multivariate Control Problem

V(t,x) = {J(t,x,a) : Va}E R™ V(t,u) = {J(t,,u,a) Vo equilibrium}
e Dynamic Programming Principle e Dynamic Programming Principle
i.e. Time-consistency

e It formula e Convergence of VNV to V

e PDE (Hamilton-Jacobi-Bellman) o PDE (?) (Master Equation)
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Primitive Structure

— Actions — Actions
o': controls of the player a: control of the population
&: control of a player
— Dynamics — Dynamics

. o X7 state of the population
X{: state of individual player

pe = Lxg
Niv = % Zj 5Xt"

X% state of a player

— Cost — Cost
Ji(@): cost of the player J(a, @): cost of a player
— Equilibrium — Equilibrium
Nash Equilibrium: Mean field Equilibrium:
Ji(@*) < Ji(@*, al) J(a*, a*) < J(a*, &)
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Examples to Equilibria without Dynamics

A ={0,1}, two player. A=10,1],
(J1,h) |a1=0] a =1 J(a,3)=1-a3
a=0| (22) | (31)
a=1/| (13) | (11) a=0and a =1 are equilibria.
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Examples of Different Structures

e Games on sparse & dense graphs e Finite/continuous state/time

e Games of timing (optimal stopping) e Common noise

e Cooperative Equilibriums e Diffusion with jumps

e Games with a major player e Information available to players
e Games with clusters e State/path dependent dynamics
e Ergodic games e State/path dependent costs

e Finite player games e Non-symmetric costs for players
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Objective & Related Literature

Our objective is to study dynamic set value

(i) Establish time-consistency (DPP)
(ii) characterize V as an appropriate limit of VN (Convergence)

e Set Value is by definition unique and exists.
e We consider convergence of Set Values instead of individual equilibriums.

e Discrete time & space | state dependent controls | homogeneous controls
e Discrete time & space | path dependent controls | heterogeneous controls
e Continuous time & space | state dependent controls | homogeneous controls

Feinstein-Rudloff-Zhang (2020)

Cardaliaguet-Delarue-Lasry-Lions (2019)
Lacker (2014, 2020)

Lacker-Flem (2021)

Possamai-Tangpi (2021)

Djete (2021)
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Discrete State Dependent Setup

e S, finite state space.
e T={0,---, T}, finite time steps.
e A is the set of possible values of the control.

e Transition function:

q(t,x,v,a,%) : TxSxP(S) x AxS —(0,1]

where Z q(t,x,v,a;x) =1
xeS
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MFG | Definitions

Given
(Population) /15+1 X) ZMS 5 2 X, Hs ;;()
x€ES
(Player) ]P)“a;t’X?&(Xs-s-l = X’Xs) = q(S,Xs,M?, ;X)
T-1
J(t, py 08, x) = E [G(XT”U%') + > F( )}
t

We say o* € M(t, ) a MFG Equilibrium if

J(t, p, ;0% x) < J(t, p, a5 d,x),  Vx,d

Definition

V(t,pn) = {J(t,u,a*;a*, ) forall o € M(t,u)}

A
— - - R AR
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NPG | Definitions

Given
t,X,a !
P X,(l(Xs+1_X|X)—Hq(S NX’ 'XJ)
J
X = (X,---,X") is the cannonical process on (T x S)".

T-1

JN(t,%,d@) =E [G(X"T,M%T) +> ,c(...)]

We say a* € M"(t, %) if

IN(t, @) < JN(t, %, av7ah),  Via

Definition

V(e ) = { (N %, @), for all @ € MN(, %)}

v
et

=i i - = =
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e-MFG Equilibriums

e-MFG Equilibrium: J(t, p, o*; o*, x)—¢ < J(t, p, a*; @, x).
Define the Set Value as;

V(t,m) = () V()

e>0

e This definition is analoguous to the standard control theory, as the value
defined to be the infimum over e-optimal controls:

v(t,x) = 6||_r:2) (t,x), Je(t,x) = |(;16f J(t, x,af)

e |t is possible that there is no optimal control.
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Stability Issue

A ={0,1}, two player. A =10,1],
(J1, L) | a1=0] a1 =1 J(a,3)=1—(a+d)a
=0 (3,1-9)
a=11(1463)] (1,1) Only is an equilibrium.

e Extension to e-equilibria is crucial to have stability hence convergence.
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Information that control depends on

* = a(t7Xti7/~L{“V)
[DPP holds / Convergence holds]

*a= Oé(t,X[’;) t] /’L{g t])
[DPP holds / Convergence holds (Continuous?)]

e a=at,Xy, -, Xn) Full information (— weak MFG)

For games, difference is crucial because when equilibrium is not unique, set
values depend on the choice.
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Notes on Convergence

e In MFG, there is only one control that population use.
However, we need 'same’ type of controls for both NPG and MFG:

- V(t, p) is characterized as the limit fo homogeneous controls
(ol =...=aM)

- Without this restriction, limit of NPG is characterized by using
relaX Contr0| for MFG (f q(s, x, u7, 3 %)¥(s, x, ))

e Introduce corresponding Set Values;

VIR ) and V(e )
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An Important Observation

Introduce

AV(t, %,d) = 25 oy € P(Xe X Apaen)

There exists JV such that

IVt %, @) = IV (e, AV (e, %, d); x7, o)

1

Next, we introduce MFG corresponding to A € P(X; x Apaen) with
marginal and conditional distribution;

A(x., &)
M (x.)

pMN(x) = /A h A(x., da), A () =
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Global Formulation for MFG

MFG: Given , introduce a mapping As : Ty — P(X X Aparh),
(Population)  Asi1(x,a) = g(s, xs, un, a(s, x., ™) xs41)Ns(x., @)

(Player)  P* 5 5(Xgyq = x|X) = q(s, X, 2, G(s, X, ul); %)
T-1

J(t, N a,x)=E |:G(XT,M/7\') + Z F(--- )}

s=t
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Global Formulation and Relax Controls

Lo, x €A ¢ arbiom
MF T lat; «) 2F (<) o ekt
9 s xe A
cans—— € A *
Relaxed ¥ e P (v ) T (05 7* equbbeivm
e 5)("() - T equibbrivm
gtobaL e A T(r‘; ,x) ;(I[\"/.x) X € spp T

e NPG is naturally connected with AN = (1/N) 3> 0 o)

Vg/oba/(t’ ’u) _ Vrelax(t, 'u)

™ =
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Time Consistency - Dynamic Programming Principle

e Define cost function up to time To < T with a given terminal cost .

o Introduce appropriate MFG Equilibrium M( To, 1), t, j1).

V(t,pn) = {J(To,w; top,aat )

for some and }

o Holds for V&% 'y, yrelax
e DPP is central for PDE approach, which is an ongoing project.
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Convergence Results

For NQ’ = U,
ﬂ lim inf (t, 1) =V(t,p) = ﬂ lim sup VN-hom (¢ 1)
e>0 N7ree e>p N=voo )
For MQ’ = U,
() liminf V(t, uf) = V" (8, ) = () limsup VY (¢, 1)
e>0 N7 e>0 N—oo
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N-player game
i ° PN PN i i v_ 1 ,
X =xi +/t b(r, X0, e’y i, X,y ))ds + Be = Br, il = Zéxﬂ
J
) . T
(7 (0d) = Il i, 8) = E[G(XG, u) + / F(---)]
t

o e M(t, 1) : / Ut 1", 0% x, ") —inf J(t, 1", 0" x, @) (dx) < e
Rd «

Mean Field game

X :§+/ b(r, X7, pr, a(r, X7, pur))ds + Bs — B, 1) = Lxo
t
Xt =x +/ b(r, X%, i, G(r, X7%, i) ds + Bs — Be
t
) T
J(t, p,a; x,8) =E [G(X?‘sa7 1$) + / F(--- )]
t

ot e M (t, 1) : /

Ut p1", 0" x, %) —inf J(t, p, " x, &) p(dx) < e
R “
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Main Results

We define the Set Value as

Vit ) = {p € C®Y) 30 € M () st / (00— J(t. 10" x,0°) () <
]Rd

ﬂ lim inf VNRom (¢ Ny = (¢, ﬂ lim sup VV-hom(¢ 1, 1Y)

e>0 N7ee esp N—oo

V(t,pu) = ﬂ {90 € CLip(R?) : I(, ) s.t.

e0
af € M(To, ¥, t,p) and 1 € Ve(To, 1)

/ |(70 TOa"vZJ t ,UJ,O[ X, )|,U(dX) < E}

.
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