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Abstract

In this paper we study mean field games with possibly multiple mean field equilibria. In-
stead of focusing on the individual equilibria, we propose to study the set of values over all
possible equilibria, which we call the set value of the mean field game. When the mean field
equilibrium is unique, typically under certain monotonicity conditions, our set value reduces to
the singleton of the standard value function which solves the master equation. The set value
is by nature unique, and we shall establish two crucial properties: (i) the dynamic program-
ming principle, also called time consistency; and (ii) the convergence of the set values of the
corresponding N -player games, which can be viewed as a type of stability result. To our best
knowledge, this is the first work in the literature which studies the dynamic value of mean field
games without requiring the uniqueness of mean field equilibria. We emphasize that the set
value is very sensitive to the type of the admissible controls. In particular, for the convergence
one has to restrict to corresponding types of equilibria for the N-player game and for the mean
field game. We shall illustrate this point by investigating three cases, two in finite state space
models and the other in a continuous time model with controlled diffusions.
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1 Introduction

In this paper we study Mean Field Games (MFG, for short) without monotonicity conditions. There
are typically multiple Mean Field Equilibria (MFE, for short) with possibly different values. Instead
of focusing on the individual equilibria, we propose to study the set of values over all equilibria,
which we call the set value of the MFG. Note that the set value always exists (with empty set as
a possible value) and is by definition unique. When the MFE is unique, typically under certain
monotonicity conditions, our set value is reduced to the singleton of the standard value function
of the game, which solves the so called master equation. So the set value can be viewed as the
counterpart of the standard value function for MFGs without monotonicity conditions, and it indeed
shares many nice properties. In this paper, we focus particularly on two crucial properties of the set
value:

� the Dynamic Programming Principle (DPP, for short), or say the time consistency;

� the convergence of the set values of the corresponding N -player games, which can be viewed
as a type of stability result in terms of model perturbation.

For general theory of MFGs, we refer to Caines-Huang-Malhame [7], Lasry-Lions [34], Lions [36],
Cardaliaguet [8], Bensoussan-Frehse-Yam [6], and Camona-Delarue [13, 14].

In standard stochastic control theory, it is well known that the dynamic value function satisfies
the DPP. In fact, this is the underlying reason for the PDE approach to work. For MFGs under
appropriate monotonicity conditions, the value function (at the unique MFE) also satisfies the DPP,
which, together with the Itô formula, leads to the master equation. However, with the presence of
multiple equilibria (see, e.g., Bardi-Fischer [2] for some examples), to our best knowledge this is the
first work in the literature to study the MFG dynamically and to address the time consistency issue.
We show that, when formulated properly, the dynamic set value function satisfies the DPP. This also
opens the door to a possible PDE approach for these general games by introducing the so called
set valued PDE. We refer to our work [30] for set valued PDEs induced by multivariate stochastic
control problems, and Ma-Zhang-Zhang [37] for numerical methods for set valued PDEs, and we
leave their extension to mean field games for future research. Our set value approach follows from
Feinstein-Rudloff-Zhang [24], which studies nonzero sum games with finitely many players. See
also the related works Abreu-Pearce-Stacchetti [1] and Sannikov [42] in economics literature, and
Feinstein [23] which studies the set of equilibria instead of values.

We note that the set value of games relies heavily on the types of admissible controls we use. In
this paper we shall consider closed loop controls. The open loop equilibria of games are typically
time inconsistent, see e.g. Buckdahn’s counterexample in Pham-Zhang [40, Appendix E] for a two
person zero sum game, and consequently, the set value of games with open loop controls would
violate the DPP. For the MFG, noting that the required symmetry decomposes the game problem
into a standard control problem and a fixed point problem of measures, and that open loop and
closed loop controls yield the same value function for a standard control problem, it is possible that
the set value with open loop controls still satisfies the DPP. Nevertheless, bearing in mind the DPP
of the set value for more general (non-symmetric) games, as well as the practical consideration in
terms of the information available to the players, we shall focus on closed loop controls. There is
also a very subtle path dependence issue. While the game parameters are state dependent, we may
consider both state dependent and path dependent controls. For general non-zero sum games (not
mean field type), [24] shows that DPP holds for the set value for path dependent controls, but in
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general fails for the set value for state dependent controls. For MFGs with closed loop controls,
again due to the required symmetric properties, the set values for both state dependent controls and
path dependent controls will satisfy the DPP, but they are in general not equal. For MFGs with
closed loop relaxed controls, or say closed loop mixed strategies, however, it turns out that the state
dependent controls and the path dependent controls induce the same set value which still satisfies
the DPP.

We next turn to the convergence issue. Let V and VN denote the set values of the MFG and the
corresponding N -player games, respectively, under appropriate closed-loop controls. Our conver-
gence result reads roughly as follows (the precise form is slightly different):

lim
N!1

VN .0; Ex/ D V .0; �/; when �N
Ex
WD

1

N

NX
iD1

ıxi ! �: (1.1)

In the realm of master equations, again under certain monotonicity conditions and hence with unique
MFE, one can show that the values of the N -player games converge to the value of the MFG.
See Cardaliaguet-Delarue-Lasry-Lions [10], followed by Bayraktar-Cohen [3], Cardaliaguet [9],
Cecchin-Pelino [17], Delarue-Lacker-Ramanan [20, 21], Gangbo-Meszaros [29], and Mou-Zhang
[38], to mention a few. So (1.1) can be viewed as their natural extension to MFGs without mono-
tonicities.

We emphasize again that the set value is very sensitive to the types of admissible controls.
To ensure the convergence, one simple but crucial observation is that the N -player game and the
MFG should use the ”same” type of controls (more precisely, corresponding types of controls in
appropriate sense). We illustrate this point by considering two cases. Note that in the standard
literature each player is required to use the same closed loop control along an MFE. For the first
case, we will obtain the desired convergence by restricting the N -player game to homogeneous
equilibria, namely each player also uses the same closed loop control. In the second case, we
remove such restriction and consider heterogenous equilibria for the N -player games. Note that a
closed loop control means the control depends only on the state. In this heterogenous case players
with the same state may choose different controls, then one can not expect in the limit they will
have to use the same control1. Indeed, in this case the limit is characterized by the MFG with
closed loop relaxed controls, or say closed loop mixed strategies, which exactly means players with
the same state may still have a distribution of controls to choose from. However, since our relax
control for MFG is still homogeneous, namely each player uses the same relax control, the controls
for N-player game and for MFG appear to be in different forms. Our approach is to introduce a
new formulation for the MFG, which embeds the structure of heterogenous controls and shares the
same set value as the relax control formulation of the MFG. For the homogeneous case, we will
investigate both a discrete time model with finite state space and a continuous time diffusion model
with drift controls. But for the heterogeneous case we will investigate the discrete model only. The
continuous model in such case involves some technical challenges for the convergence and we shall
leave it for future research. We shall point out that, however, the DPP would hold in much more
general models without significant difficulties.

To ensure the convergence, another main feature is that we define the set value as the limit of
the approximate set values over approximate equilibria, rather than the true equilibria. We call the

1When the MFE is unique, under appropriate monotonicity conditions, the set value becomes a singleton and it is
not sensitive to the type of admissible controls anymore. Consequently, the convergence becomes possible even if the
N -player games and the MFG use different types of controls, see e.g. [10]
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latter the raw set value, and both the set value and the raw set value satisfy the DPP. However, the
raw set value is extremely sensitive to small perturbations of the game parameters, in fact, in general
even its measurability is not clear, so one can hardly expect the convergence for the raw set values.
In the standard control theory, the value function is defined as the infimum of controlled values,
which is exactly the limit of values over approximate optimal controls, rather than the value over
true optimal controls which may not even exist. So our set value, not the raw set value, is the natural
extension of the standard value function in control theory. Moreover, since we are considering
infinitely many players, an approximate equilibrium means it is approximately optimal for most
players, but possibly with a small portion of exceptions, as introduced in Carmona [11].

We would like to mention that, although it is not the focus of the present paper, the set value
is also numerically a lot easier to compute than the raw set value. For example, the duality result
for set values in [24, Section 3.4] (for finite player games) is very useful for constructing efficient
numerical algorithms, see [37]. However, this is not feasible for the raw set value which lacks
regularity and thus is hard to approximate in general.

At this point we should mention that, for MFGs without monotonicity conditions, there have
been many publications on the convergence of N -player games, in terms of equilibria instead of
values. For open loop controls, we refer to Camona-Delarue [12], Feleqi [25], Fischer [26], Fischer-
Silva [27], Lacker [31], Lasry-Lions [34], Lauriere-Tangpi [35], and Nutz-San Martin-Tan [39], to
mention a few. In particular, [31] provides the full characterization for the convergence: any limit of
approximate Nash equilibria ofN -player games is a weak MFE, and conversely any weak MFE can
be obtained as such a limit. The work [26] is also in this direction. For closed loop controls, which
we are mainly interested in, the situation becomes much more subtle. The seminal paper Lacker
[32] established the following result:

fStrong MFEsg � fLimits of N -player approx. equilibriag � fWeak MFEsg: (1.2)

Here an MFE is strong if it depends only on the state processes, and weak if it allows for additional
randomness. The left inclusion in (1.2) was known to be strict in general. This work has very
interesting further developments recently2 by Lacker-Flem [33] and Djete [22]. In particular, [22]
shows that the right inclusion in (1.2) is actually an equality.

We emphasize again that we are considering the convergence of sets of values, rather than
sets of equilibria as in (1.2). For standard control problems, the focus is typically to characterize
the (unique) value and to find one (approximate) optimal control, and the player is less interested
in finding all optimal controls since they have the same value. The situation is quite different for
games, because different equilibria can lead to different values. Then it is not satisfactory to find just
one equilibrium (especially if it is not Pareto optimal). However, for different equilibria which lead
to the same value, the players are indifferent on them. So for practical purpose the players would
be more interested in finding all possible values3 and then to find one (approximate) equilibrium for
each value. This is one major motivation that we focus on the set value, rather than the set of all
equilibria. We also note that in general the set value could be much simpler than the set of equilibria.
For example, in the trivial case that both the terminal and the running cost functions are constants,
the set value is a singleton, while the set of equilibria consists of all admissible controls.

We should point out that our admissible controls differ from those in [22, 32, 33]. Roughly
speaking, we put two constraints, due to both practical and technical considerations, on theN -player

2These two works [22, 33] were circulated slightly after our present paper.
3Another very interesting question is how to choose an optimal (in appropriate sense) value after characterizing the

set value. We shall leave this for future research.
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approximate equilibria so that the left inclusion in (1.2) (in terms of values instead of equilibria)
becomes an equality. First, for the N -player games, [22, 32, 33] use full information controls
˛i .t; X

1
t ; � � � ; X

N
t /, while we consider symmetric controls ˛i .t; X it ; �

N
t /, where X it is the state of

Player i , and �Nt WD
1
N

PN
jD1 ıXjt

is the empirical measure of all the players’ states. Note that,
as a principle the controls should depend only on the information the players observe. While both
settings are very interesting, since N is large, the full information may not be available in many
practical situations.

The second difference is that we assume each control is Lipschitz continuous in �, while
[22, 32, 33] allow for measurable controls. We shall emphasize though we allow the Lipschitz
constant to depend on the control, and thus our set value does not depend on any fixed Lipschitz
constant. Roughly speaking, we are considering game values which can be approximated by Lip-
schitz continuous approximate equilibria. This is typically the case in the standard control theory:
even if the optimal control is discontinuous, in most reasonable framework we should be able to
find Lipschitz continuous approximate optimal controls. The situation is more subtle for games.
There may exist (closed loop) equilibria whose values cannot be approximated by any Lipschitz
continuous approximate equilibria. In fact, when considering all measurable equilibria, the con-
vergence of set values in (1.1) fails in general, see Example 7.2 and Remark 7.3 below. While
clearly more general and very interesting mathematically, such measurable equilibria are hard to
implement in practice, since inevitably we have all sorts of errors in terms of the information, or
say, data. Their numerical computation is another serious challenge. For example, in the popular
machine learning algorithm, the key idea is to approximate the controls via composition of linear
functions and the activation function, then by definition the optimal controls/equilibria provided by
these algorithms are (locally) Lipschitz continuous. That is, the game values falling out of our set
value are essentially out of reach of these algorithms, see e.g. [37]. Moreover, as a consequence
of our constraints, our proof of (1.1) is technically a lot easier than the compactness arguments for
(1.2) used in [22, 32, 33].

Finally we would like to mention some other approaches for MFGs with multiple equilibria.
One is to add sufficient (possibly infinite dimensional) noise so that the new game will become
non-degenerate and hence have unique MFE, see e.g. Bayraktar-Cecchin-Cohen-Delarue [4, 5],
Delarue [18], Delarue-Foguen Tchuendom [19], Foguen Tchuendom [28]. Another approach is
to study a special type of MFEs, see e.g. Cecchin-Dai Pra-Fisher-Pelino [15], Cecchin-Delarue
[16], and [19]. Another interesting work is Possamai-Tangpi [41] which introduces an additional
parameter functionƒ such that the MFE corresponding to any fixedƒ is unique and then the desired
convergence is obtained.

The rest of the paper is organized as follows. In Section 2 we introduce the set value for an
MFG in a discrete time model on finite state space and establish the DPP, and in Section 3 we prove
the convergence for the corresponding N -player games with homogeneous equilibria. Sections
4 and 5 are devoted to MFGs with relaxed controls and the corresponding N -player games with
heterogenous equilibria. In Section 6 we study a continuous time model with controlled diffusions.
Finally in Appendix we provide some examples, discuss the subtle path dependence issue, and
complete some technical proofs.
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2 Mean field games on finite space with closed loop controls

In this section we consider an MFG on finite space (both time and state are finite) with closed loop
controls, and for simplicity we restrict to state dependent setting. Since the game typically has
multiple MFEs which may induce different values, see Example 7.1 below for an example, we shall
introduce the set value of the game over all MFEs. Our goal is to establish the DPP for the MFG
set value, and we shall show in the next section that the set values of the corresponding N -player
games converge to the MFG set value.

2.1 The basic setting

Let T WD f0; � � � ; T g be the set of discrete times; Tt WD ft; � � � ; T g for t 2 T ; S the finite
state space4 with size jSj D d ; P .S/ the set of probability measures on S, equipped with the
1-Wasserstein distance W1. Since S is finite, W1 is equivalent to the total variation distance5 which
is convenient for our purpose: by abusing the notation W1,

W1.�; �/ WD
X
x2S

j�.x/ � �.x/j; �; � 2 P .S/: (2.1)

Let P0.S/ denote the subset of � 2 P .S/ which has full support, namely �.x/ > 0 for all x 2 S.
Moreover, let A � Rd0 be a measurable set from which the controls take values; and q W T � S �

P .S/ �A � S! .0; 1/ be a transition probability function:X
Qx2S

q.t; x; �; aI Qx/ D 1; 8.t; x; �; a/ 2 T � S �P .S/ �A:

We shall use the weak formulation which is more convenient for closed loop controls. That is,
we fix the canonical space and consider controlled probability measures on it. To be precise, let
� WD X WD STC1 be the canonical space; X W T � � ! S the canonical process: Xt .!/ D
!t ; F WD fFtgt2T WD FX the filtration generated by X ; and Astate the set of state dependent
admissible controls ˛ W T � S! A. Introduce the concatenation for controls:

.˛ ˚T0 Q̨ /.s; x/ WD ˛.s; x/1fs<T0g C Q̨ .s; x/1fs�T0g; ˛; Q̨ 2 Astate: (2.2)

It is clear that ˛ ˚T0 Q̨ 2 Astate. Given .t; �; ˛/ 2 T � P .S/ � Astate, let P t;�;˛ denote the
probability measure on FT determined recursively by: for s D t; � � � ; T ,

P t;�;˛ ıX�1t D �; P t;�;˛.XsC1 D QxjXs D x/ D q.s; x; �
˛
s ; ˛.s; x/I Qx/I

where �˛s WD P t;�;˛ ıX�1s :
(2.3)

We note that �˛ WD f�˛s gs2Tt are uniquely determined and X is a Markov chain on Tt under
P t;�;˛. We also note that �˛ depends on .t; �/ as well, but we omit it for notational simplicity.
However, the distribution of fXsgsD0;��� ;t�1 is not specified and is irrelevant, and f˛sg0�s<t is also
irrelevant. Moreover, given f��g WD f�sgs2Tt , x 2 S, and Q̨ 2 Astate, let P f��gIt;x; Q̨ denote the
probability measure on FT determined recursively by: for s D t; � � � ; T � 1,

P f��gIt;x; Q̨ .Xt D x/ D 1; P f��gIt;x; Q̨ .XsC1 D NxjXs D Qx/ D q.s; Qx; �s; Q̨ .s; Qx/I Nx/: (2.4)

4We may allow the state space St to depend on time t and all the results in this paper will remain true.
5More precisely, the total variation distance is 12W1 for the W1 in (2.1).
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As in the standard MFG literature, here we are assuming that the population uses the common
control ˛ while the individual player is allowed to use a different control Q̨ .

We remark that, since we assume q > 0, then for any .t; �/ and ˛, �˛s 2 P0.S/ for all s > t .
For the convenience of presentation, in this section we shall restrict our discussion to the case
� 2 P0.S/. The general case that the initial measure � is not fully supported can be treated fairly
easily, as we will do in Section 6 below. The situation with degenerate q, however, is more subtle
and we shall leave it for future research.

We finally introduce the cost functional for the MFG: for the �˛ D f�˛� g in (2.3),

J.t; �; ˛I x; Q̨ / WD J.�˛I t; x; Q̨ /; v.f��gI s; x/ WD inf
Q̨2Astate

J.f��gI s; x; Q̨ /I

where J.f��gI s; x; Q̨ / WD EPf��gIs;x; Q̨
h
G.XT ; �T /C

T�1X
rDs

F.r;Xr ; �r ; Q̨ .r; Xr//
i
:

(2.5)

Here, since T and S are finite, F and G are arbitrary measurable functions satisfying

inf
a2A

F.t; x; �; a/ > �1 for all .t; x; �/:

We remark that here v.f��gI �; �/ is the value function of a standard stochastic control problem
with parameter f��g. In particular, in continuous time models, �˛ and v.�˛I �; �/ will satisfy the
Fokker-Planck equation and the HJB equation, respectively.

Definition 2.1 Given .t; �/ 2 T �P0.S/, we say ˛� 2 Astate is a state dependent MFE at .t; �/,
denoted as ˛� 2Mstate.t; �/, if

J.t; �; ˛�I x; ˛�/ D v.�˛
�

I t; x/; for all x 2 S: (2.6)

In this and the next section, we will use the following conditions.

Assumption 2.2 (i) q � cq for some constant cq > 0;
(ii) q is Lipschitz continuous in .�; a/, with a Lipschitz constant Lq;
(iii) F;G are bounded by a constant C0 and uniformly continuous in .�; a/, with a modulus of

continuity function �.

2.2 The raw set value V0

We introduce the raw set value for the MFG over all state dependent MFEs:

V0.t; �/ WD
n
J.t; �; ˛�I �; ˛�/ W ˛� 2Mstate.t; �/

o
� L0.SIR/: (2.7)

Here the elements of V0.t; �/ are functions from S to R, which coincide with Rd by identifying
' 2 L0.SIR/ with .'.x/ W x 2 S/ 2 Rd . We call V0.t; �/ the raw set value and we will introduce
the set value V .t; �/ of the MFG in the next subsection.

Next, for any T0 2 Tt ,  2 L0.S �P0.S/IR/, we introduce the MFG on ft; � � � ; T0g:

J.T0;  I t; �; ˛I x; Q̨ / WD EP�
˛ It;x; Q̨

h
 .XT0 ; �

˛
T0
/C

T0�1X
sDt

F.s;Xs; �
˛
s ; Q̨ .s; Xs//

i
: (2.8)
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In the obvious sense we define ˛� 2Mstate.T0;  I t; �/ by: for any x 2 S,

J.T0;  I t; �; ˛
�
I x; ˛�/ D v.T;  I�˛

�

I t; x/ WD inf
Q̨2Astate

J.T;  I t; �; ˛�I x; Q̨ /: (2.9)

At below we will repeatedly use the following simple fact due to the tower property of conditional
expectations:

J.t; �; ˛I x; Q̨ / D J.T0;  I t; �; ˛I x; Q̨ /; where  .y; �/ WD J.T0; �; ˛Iy; Q̨ /: (2.10)

The following time consistency of MFE is the essence of the DPP for the raw set value.

Proposition 2.3 Fix 0 � t < T0 � T and � 2 P0.S/. For any ˛�; Q̨� 2 Astate, denote Ǫ� WD
˛� ˚T0 Q̨

� and  .y; �/ WD J.T0; �; Q̨
�Iy; Q̨�/. Then Ǫ� 2 Mstate.t; �/ if and only if ˛� 2

Mstate.T0;  I t; �/ and Q̨� 2Mstate.T0; �
˛�

T0
/.

Proof (i) We first prove the if part. Let ˛� 2 Mstate.T0;  I t; �/ and Q̨� 2 Mstate.T0; �
˛�

T0
/.

For arbitrary ˛ 2 Astate and x 2 S, by (2.10) we have

J.t; �; Ǫ�I x; ˛/ D EP�
˛�It;x;˛

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; ˛/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛.s; Xs//
i

� EP�
˛�It;x;˛

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; Q̨

�/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛.s; Xs//
i

D EP�
˛�It;x;˛

h
 .XT0 ; �

˛�

T0
/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛.s; Xs//
i

D J.T0;  I t; �; ˛
�
I x; ˛/ � J.T0;  I t; �; ˛

�
I x; ˛�/ D J.t; �; Ǫ�I x; Ǫ�/;

where the first inequality is due to Q̨� 2 Mstate.T0; �
˛�

T0
/ and the second inequality is due to

˛� 2Mstate.T0;  I t; �/. Then Ǫ� 2Mstate.t; �/.
(ii) We now prove the only if part. Let Ǫ� 2 Mstate.t; �/. For any ˛ 2 Astate, we have

˛ ˚T0 Q̨
� 2 Astate. Then, since Ǫ� 2Mstate.t; �/, for any x 2 S, by (2.10) we have

J.T0;  I t; �; ˛
�
I x; ˛�/ D J.t; �; Ǫ�I x; Ǫ�/ � J.t; �; Ǫ�I x; ˛ ˚T0 Q̨

�/ D J.T;  I t; �; ˛�I x; ˛/:

This implies that ˛� 2Mstate.T0;  I t; �/.
Moreover, note that ˛� ˚T0 ˛ 2 Astate and again since Ǫ� 2Mstate.t; �/, we have

EP�
˛�It;x;˛�

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; Q̨

�/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛
�.s; Xs//

i
D J.t; �; Ǫ�I x; Ǫ�/ � J.t; �; Ǫ�I x; ˛� ˚T0 ˛/

D EP�
˛�It;x;˛�

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; ˛/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛
�.s; Xs//

i
:

This implies that, recalling the v in (2.5) and by the standard stochastic control theory,

EP�
˛�It;x;˛�

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; Q̨

�/
i
� inf

˛2Astate
EP�

˛�It;x;˛�
h
J.T0; �

˛�

T0
; Q̨�IXT0 ; ˛/

i
D EP�

˛�It;x;˛�
h
v.� Ǫ

�

IT0; XT0/
i
: (2.11)
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On the other hand, by definition v.� Ǫ
�

IT0; Qx/ � J.T0; �
˛�

T0
; Q̨�I Qx; Q̨�/ for all Qx 2 S. Then

J.T0; �
˛�

T0
; Q̨�IXT0 ; Q̨

�/ D v.� Ǫ
�

IT0; XT0/; P�
˛� It;x;˛�-a.s.

Since q > 0, then clearly P�
˛� It;x;˛�.XT0 D Qx/ > 0 for all Qx 2 S. Thus J.T0; �˛

�

T0
; Q̨�I Qx; Q̨�/ D

v.� Ǫ
�

IT0; Qx/, for all Qx 2 S. This implies that Q̨� 2Mstate.T0; �
˛�

T0
/.

We then have the following DPP.

Theorem 2.4 For any 0 � t < T0 � T , and � 2 P0.S/, we have

V0.t; �/ WD
n
J.T0;  I t; �; ˛

�
I �; ˛�/ W for all  2 L0.S �P0.S/IR/ and ˛� 2 Astate

such that  .�; �˛
�

T0
/ 2 V0.T0; �

˛�

T0
/ and ˛� 2Mstate.T0;  I t; �/

o
:

(2.12)

Proof Let QV0.t; �/ denote the right side of (2.12). First, for any J.T0;  I t; �; ˛�I �; ˛�/ 2
QV0.t; �/ with desired  ; ˛� as in (2.12). Since  .�; �˛

�

T0
/ 2 V0.T0; �

˛�

T0
/, there exists Q̨� 2

Mstate.T0; �
˛�

T0
/ such that  .�; �˛

�

T0
/ D J.T0; �

˛�

T0
; Q̨�I �; Q̨�/. By Proposition 2.3 we have Ǫ� WD

˛� ˚T0 Q̨
� 2 Mstate.t; �/. Then, by (2.10), J.T0;  I t; �; ˛�I �; ˛�/ D J.t; �; Ǫ�I �; Ǫ�/ 2

V0.t; �/, and thus QV0.t; �/ � V0.t; �/.
On the other hand, let J.t; �; ˛�I �; ˛�/ 2 V0.t; �/with ˛� 2Mstate.t; �/. Introduce .x; �/ WD

J.T0; �; ˛
�I x; ˛�/. By Proposition 2.3 again we see that ˛� 2 Mstate.T0;  I t; �/ and ˛� 2

Mstate.T0; �
˛�

T0
/, and the latter implies further that  .�; �˛

�

T0
/ 2 V0.T0; �

˛�

T0
/. Then by the defini-

tion of QV0.t; �/ that J.t; �; ˛�I �; ˛�/ D J.T0;  I t; �; ˛
�I �; ˛�/ 2 QV0.t; �/. That is, V0.t; �/ �

QV0.t; �/.

2.3 The set value Vstate

While Theorem 2.4 is elegant, the raw set value V0.t; �/ is very sensitive to small perturbations of
the coefficients F;G and the variable�. Indeed, even the measurability of the subset V0.t; �/ � Rd

and the measurability of the mapping � 7! V0.t; �/ are not clear to us. Moreover, in general it does
not look possible to have the convergence of the raw set value of the correspondingN -player games
to V0.t; �/. Therefore, in this subsection we shall modify V0.t; �/ and introduce the set value
Vstate.t; �/ of the MFG as follows.

Definition 2.5 (i) For any .t; �/ 2 T � P0.S/ and " > 0, let M"
state.t; �/ denote the set of

˛� 2 Astate such that

J.t; �; ˛�I x; ˛�/ � v.�˛
�

I t; x/C "; for all x 2 S: (2.13)

(ii) The set value of the MFG at .t; �/ is defined as:

Vstate.t; �/ WD
\
">0

V "
state.t; �/; where (2.14)

V "
state.t; �/ WD

n
' 2 L0.SIR/ W k' � J.t; �; ˛�I �; ˛�/k1 � " for some ˛� 2M"

state.t; �/
o
:

9



Recall (2.5), then (2.13) and (2.14) imply that

0 � J.t; �; ˛�I x; ˛�/ � v.�˛
�

I t; x/ � "; k' � v.�˛
�

I t; �/k1 � 2": (2.15)

So we may alternatively define V "
state.t; �/ by using k' � v.�˛

�

I t; �/k1 � ".

Remark 2.6 (i) In the case that there is only one player, namely q; F;G do not depend on �,
P�

˛� It;x;˛ D P t;x;˛ does not depend on � and ˛�. Let

V.t; x/ WD inf
˛2Astate

EP t;x;˛
h
G.XT /C

T�1X
sDt

F.s;Xs; ˛.s; Xs//
i

denote the value function of the standard stochastic control problem. One can easily see that, when
there exists an optimal control ˛�, V0.t; �/ D Vstate.t; �/ D fV.t; �/g. However, when there is no
optimal control, we still have Vstate.t; �/ D fV.t; �/g but V0.t; �/ D ;. So the natural extension
of the value function V is the set value Vstate, not V0.

(ii) We remark that
T
">0M"

state.t; �/ D Mstate.t; �/, however, in general it is possible that
Vstate.t; �/ is strictly larger than V0.t; �/. Indeed, Vstate.t; �/ can be even larger than the closure
of V0.t; �/, where the latter is still empty when there is no optimal control.

Similarly, given T0 and  , M"
state.T0;  I t; �/ denotes the set of ˛� 2 Astate such that

J.T0;  I t; �; ˛
�
I x; ˛�/ � inf

˛2Astate
J.T0;  I t; �; ˛

�
I x; ˛/C "; 8 x 2 S: (2.16)

The DPP remains true for Vstate after appropriate modifications as follows.

Theorem 2.7 Under Assumption 2.2 (i), for any 0 � t < T0 � T and � 2 P0.S/,

Vstate.t; �/ WD
\
">0

n
' 2 L0.SIR/ W k' � J.T0;  I t; �; ˛

�
I �; ˛�/k1 � "

for some  2 L0.S �P0.S/IR/ and ˛� 2 Astate such that

 .�; �˛
�

T0
/ 2 V "

state.T0; �
˛�

T0
/; ˛� 2M"

state.T0;  I t; �/
o
:

(2.17)

This theorem can be proved by modifying the arguments in Theorem 2.4 and Proposition 2.3. How-
ever, since the proof is very similar to that of Theorem 4.2 below, except that the latter is in the more
complicated path dependent setting, we thus postpone it to Appendix.

3 The N -player game with homogeneous equilibria

In this section we study the N -player game whose set value will converge to Vstate.

3.1 The N -player game

Set �N WD XN with canonical processes EX D .X1; � � � ; XN /, where X i stands for the state
process of Player i . The empirical measure of EX is denoted as: with the Dirac measure ı�,

�Nt WD �
N
EXt

where �N
Ex
WD

1

N

NX
iD1

ıxi 2 P .S/; for Ex D .x1; � � � ; xN / 2 SN : (3.1)

10



The player i will have control ˛i . In the literature, a closed loop control ˛i may depend on the
full information EX . However, since we are talking about large N , in practice it may not be feasible
for each player to observe all other players’ states individually. Moreover, in the MFG setting the
population state is characterized by its distribution, not by each player’s individual state. So in this
section we consider only symmetric controls, namely ˛i depends on his/her own state X i and on
the others through the empirical measure �N .

In order to have the desired convergence, we introduce another parameter L � 0. Denote

AL
state WD

n
˛ W T � S �P .S/! A W

ˇ̌
˛.t; x; �/ � ˛.t; x; �/

ˇ̌
� LW1.�; �/;8t; x; �; �

o
; (3.2)

and A1state WD
S
L�0AL

state. Given t 2 T , Ex 2 SN , and Ę D .˛1; � � � ; ˛N / 2 .A1state/
N , let

P t;Ex; Ę denote the probability measure on F
EX
T determined recursively by: for s D t; � � � ; T � 1,

P t;Ex; Ę. EXt D Ex/ D 1; P t;Ex; Ę. EXsC1 D Ex
00
j EXs D Ex

0/ D

NY
iD1

q.s; x0i ; �
N
s ; ˛

i .s; x0i ; �
N
s /I x

00
i /; (3.3)

and the cost function of Player i is:

Ji .t; Ex; Ę/ WD EP t;Ex; Ę
h
G.X iT ; �

N
T /C

T�1X
sDt

F.s;X is ; �
N
s ; ˛

i .s; X is ; �
N
s //

i
: (3.4)

Remark 3.1 (i) It is obvious that A0
state D Astate for the Astate in the previous subsection.

For the MFG, there is no need to consider A1state. Indeed, given .t; �/ 2 T � P0.S/, for any
˛ 2 A1state, let P t;�;˛ be defined as in (2.3): again denoting �˛s WD P t;�;˛ ıX�1s ,

P t;�;˛ ıX�1t D �; P t;�;˛.XsC1 D QxjXs D x/ D q.s; x; �
˛
s ; ˛.s; x; �

˛
s /I Qx/:

Introduce Q̨ .s; x/ WD ˛.s; x; �˛s /. Then Q̨ 2 Astate and one can easily verify that � Q̨ D �˛.
In particular, the set value Vstate.t; �/ will remain the same by allowing ˛ 2 A1state. For the
N -player game, however, since �N is random, the dependence on �N makes the difference.

(ii) In the literature one typically uses �N;�it WD
1

N�1

P
j¤i ıXjt

, rather than �Nt , in (3.3) and

(3.4). The convergence results in this section will remain true if we use �N;�i instead. However, we
find it more convenient to use �Nt .

There is another crucial issue concerning the equilibria. Note that an MFE requires by definition
that each player takes the same control ˛�. To achieve the desired convergence, for the N -player
game it is natural to consider only the homogeneous equilibria: ˛1 D � � � D ˛N , which we will do
in the rest of this section. We note that, for a homogeneous control ˛, the P t;Ex;˛ WD P t;Ex;.˛;��� ;˛/

in (3.3) and Ji .t; Ex; ˛/ WD Ji .t; Ex; .˛; � � � ; ˛// in (3.4) are also symmetric in Ex, or say invariant in
terms of its empirical measure:

P t;Ex;˛ D P t;�
N
Ex
;˛; Ji .t; Ex; ˛/ D J

N .t; xi ; �
N
Ex
; ˛/: (3.5)

Definition 3.2 For any " > 0;L � 0, we say ˛� 2 AL
state is a homogeneous state dependent

."; L/-equilibrium of the N -player game at .t; Ex/, denoted as ˛� 2M
N;";L
state .t; Ex/, if:

Ji .t; Ex; ˛
�/ � v

N;L
i .t; Ex; ˛�/ WD inf

Q̨2ALstate

Ji .t; Ex; .˛
�; Q̨ /i /C "; i D 1; � � � ; N;

where .˛; Q̨ /i denote the vector Ę such that ˛i D Q̨ and ˛j D ˛ for all j ¤ i :
(3.6)
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In light of (3.5), clearly M
N;";L
state .t; Ex/ is law invariant: M

N;";L
state .t; Ex/ DM

N;";L
state .t; Ex

0/ whenever
�N
Ex
D �N

Ex0
. Thus, by abusing the notation, we may denote M

N;";L
state .t; Ex/ DM

N;";L
state .t; �

N
Ex
/ and call

˛� a homogeneous state dependent ."; L/-equilibrium at .t; �N
Ex
/.

Note again that q > 0, then similar to Subsection 2.1, for convenience in this section we restrict
to only those Ex such that �N

Ex
has full support, and we denote

SN0 WD
˚
Ex 2 SN W �N

Ex
2 P0.S/

	
; PN .S/ WD

˚
�N
Ex
W Ex 2 SN0

	
� P0.S/: (3.7)

We now define the set value of the homogeneous N -player game: recalling (3.5),

VN
state.t; �/ WD

\
">0

V
N;"
state.t; �/ WD

\
">0

[
L�0

V
N;";L
state .t; �/; 8.t; �/ 2 T �PN .S/; where

V
N;";L
state .t; �/ WD

n
' 2 L0.SIR/ W 9˛� 2M

N;";L
state .t; �/ s.t. k' � JN .t; �; �; ˛�/k1 � "

o
:

(3.8)

Remark 3.3 Note that we require Q̨ 2 AL
state in (3.6) for the same L, so

S
L�0 V

N;";L
state .t; �/ at

above is in general different from V
N;";1
state .t; �/, which is defined in an obvious way by requiring

˛�; Q̨ 2 A1state in (3.6). See also Remark 3.8 (ii) below.

3.2 Convergence of the empirical measures

Theorem 3.4 Let Assumption 2.2 (ii) hold. Then, for any L � 0, there exists a constant CL, which
depends only on T; d;Lq , and L such that, for any t 2 T , Ex 2 SN0 , � 2 P0.S/, ˛; Q̨ 2 AL

state, and
s � t , i D 1; � � � ; N ,

EP t;Ex;.˛; Q̨ /i �W1.�
N
s ; �

˛
s /
�
� CL�N ; where �N WD W1.�

N
Ex
; �/C

1
p
N
I (3.9)

W1

�
P t;Ex;.˛; Q̨/i ı .X is /

�1; P�
˛It;xi ; Q̨ ıX�1s

�
� CL�N : (3.10)

Proof We first recall Remark 3.1 and extend all the notations in Subsection 2.1 to those ˛ 2
AL
state in the obvious sense. Fix t; i and denote PN WD P t;Ex;.˛; Q̨/i .

Step 1. We first prove (3.9) for s D t C 1. Note that X1tC1; � � � ; X
N
tC1 are independent under

PN . By (2.1), we have

EPN �W1.�NtC1; �˛tC1/� DX
Qx2S

EPN �
j�NtC1. Qx/ � �

˛
tC1. Qx/j

�
�

X
Qx2S

�
EPN �

j�NtC1. Qx/ � �
˛
tC1. Qx/j

2
�� 12

D

X
Qx2S

h
VarPN ��NtC1. Qx/�C �EPN ��NtC1. Qx/ � �˛tC1. Qx/��2i 12 (3.11)

D

X
Qx2S

h 1
N 2

NX
jD1

VarPN �1
fX
j
tC1
DQxg

�
C
� 1
N

NX
jD1

PN .X
j
tC1 D Qx/ � �

˛
tC1. Qx/

�2i 12
�

C
p
N
C

X
Qx2S

ˇ̌ 1
N

NX
jD1

PN .X
j
tC1 D Qx/ � �

˛
tC1. Qx/

ˇ̌
:
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Note that, by the desired Lipschitz continuity of q in � and that jSj D d is finite,

ˇ̌ 1
N

NX
jD1

PN .X
j
tC1 D Qx/ � �

˛
tC1. Qx/

ˇ̌
D

ˇ̌̌ 1
N

X
x2S

hX
j¤i

q.t; x; �N
Ex
; ˛.t; x; �N

Ex
/I Qx/1fxjDxg C q.t; x; �

N
Ex
; Q̨ .t; x; �N

Ex
/I Qx/1fxiDxg

i
�

X
x2S

q.t; x; �; ˛.t; x; �/I Qx/�.x/
ˇ̌̌

�

ˇ̌̌ 1
N

X
x2S

NX
jD1

q.t; x; �N
Ex
; ˛.t; x; �N

Ex
/I Qx/1fxjDxg �

X
x2S

q.t; x; �; ˛.t; x; �/I Qx/�.x/
ˇ̌̌

C
1

N

X
x2S

ˇ̌
q.t; x; �N

Ex
; ˛.t; x; �N

Ex
/I Qx/ � q.t; x; �N

Ex
; Q̨ .t; x; �N

Ex
/I Qx/

ˇ̌
1fxiDxg

�
ˇ̌X
x2S

q.t; x; �N
Ex
; ˛.t; x; �N

Ex
/I Qx/�N

Ex
.x/ �

X
x2S

q.t; x; �; ˛.t; x; �/I Qx/�.x/
ˇ̌
C
1

N

�

X
x2S

h
j�N
Ex
.x/ � �.x/j C CLW1.�

N
Ex
; �/�.x/

i
C
1

N
� CL�N :

Then, EPN �W1.�
N
tC1; �

˛
tC1/

�
�

C
p
N
C CL�N � CL�N :

Step 2. We next prove (3.9) by induction. For any s D t; � � � ; T � 1, by Step 1 we have

EPN �W1.�
N
sC1; �

˛
sC1/

ˇ̌
F
EX
s

�
� CL

h
W1.�

N
s ; �

˛
s /C

1
p
N

i
; PN -a.s.

Then

EPN �W1.�
N
sC1; �

˛
sC1/

�
D EPN

h
EPN �W1.�

N
sC1; �

˛
sC1/

ˇ̌
EXNs
�i
� CLEPN �W1.�

N
s ; �

˛
s /
�
C

CL
p
N
:

Since T is finite, by induction we obtain (3.9) immediately.
Step 3. We now prove (3.10). Denote

�s WD W1

�
PN ı .X is /

�1; P i ıX�1s

�
where P i WD P�

˛It;xi ; Q̨ :
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Then �t D 0, and for s D t; � � � ; T � 1,

�sC1 D
X
Qx2S

ˇ̌
PN .X isC1 D Qx/ � P i .XsC1 D Qx/

ˇ̌
D

X
Qx2S

ˇ̌̌
EPN �q.s; X is ; �Ns ; Q̨ .s; X is ; �Ns /I Qx/� � EP i �q.s; Xs; �˛s ; Q̨ .s; Xs; �˛s /I Qx/�ˇ̌̌

�

X
Qx2S

ˇ̌̌
EPN �q.s; X is ; �Ns ; Q̨ .s; X is ; �Ns /I Qx/� � EPN �q.s; X is ; �˛s ; Q̨ .s; X is ; �˛s /I Qx/�ˇ̌̌

C

X
Qx2S

ˇ̌̌
EPN �q.s; X is ; �˛s ; Q̨ .s; X is ; �˛s /I Qx/� � EP i �q.s; Xs; �˛s ; Q̨ .s; Xs; �˛s /I Qx/�ˇ̌̌

� CLEPN �W1.�Ns ; �˛s /�C X
x; Qx2S

q.s; x; �˛s ; Q̨ .s; x; �
˛
s /I Qx/

ˇ̌
PN .X is D x/ � P i .Xs D x/

ˇ̌
� CL�N C �s;

where the last inequality thanks to (3.9). Now by induction one can easily prove (3.10).

3.3 Convergence of the set values

We first study the convergence of the cost functions. Recall the �N in (3.9) and the functions v in
(2.5) and vN;Li in (3.6).

Theorem 3.5 Let Assumption 2.2 (ii) and (iii) hold. For any L � 0, there exists a modulus of
continuity function �L, which depends only on T; d;Lq , C0, �, and L such that, for any t 2 T ,
�N
Ex
2 PN .S/, � 2 P0.S/, and any ˛; Q̨ 2 AL

state, i D 1; � � � ; N ,ˇ̌
Ji .t; Ex; .˛; Q̨ /i / � J.t; �; ˛I xi ; Q̨ /

ˇ̌
C
ˇ̌
v
N;L
i .t; Ex; ˛/ � v.�˛I t; xi /

ˇ̌
� �L.�N /: (3.12)

Proof Clearly the uniform estimates for J implies that for v, so we shall only prove the former
one. Recall (3.4), (2.5), and the notations PN , P i in the proof of Theorem 3.4. Then

ˇ̌̌
Ji .t; Ex; .˛; Q̨ /i / � J.t; �; ˛I xi ; Q̨ /

ˇ̌̌
� IT C

T�1X
sDt

Is; where

IT WD
ˇ̌̌
EPN �G.X iT ; �NT /� � EP i �G.XT ; �˛T /�ˇ̌̌I

Is WD
ˇ̌̌
EPN �F.s;X is ; �Ns ; Q̨ .s; X is ; �Ns //� � EP i �F.s;Xs; �˛s ; Q̨ .s; Xs; �˛s //�ˇ̌̌; s < T:

Note that, for s < T , by (3.10),

Is �
ˇ̌̌
EPN �F.s;X is ; �Ns ; Q̨ .s; X is ; �Ns //� � EPN �F.s;X is ; �˛s ; Q̨ .s; X is ; �˛s //�ˇ̌̌
C

ˇ̌̌
EPN �F.s;X is ; �˛s ; Q̨ .s; X is ; �˛s //� � EP i �F.s;Xs; �˛s ; Q̨ .s; Xs; �˛s //�ˇ̌̌

� EPN ���CLW1.�Ns ; �˛s /��CX
x2S

ˇ̌
F.s; x; �˛s ; Q̨ .s; x; �

˛
s //
ˇ̌ˇ̌

PN .X is D x/ � P i .Xs D x/
ˇ̌

� EPN ���CLW1.�Ns ; �˛s /��C CL�N :
14



Similarly we have the estimate for IT , and thusˇ̌̌
Ji .t; Ex; .˛; Q̨ /i / � J.t; �; ˛I xi ; Q̨ /

ˇ̌̌
�

TX
sDt

EPN ���CLW1.�Ns ; �˛s /��C CL�N :
This, together with (3.9), implies (3.12) for some appropriately defined modulus of continuity func-
tion �L.

Our main result of this section is the following convergence of the set values. Recall, for a
sequence of sets fEN gN�1, lim

N!1
EN WD

\
n�1

[
N�n

EN , lim
N!1

EN WD
[
n�1

\
N�n

EN .

Theorem 3.6 Let Assumption 2.2 (ii), (iii) hold and �N
Ex
2 PN .S/! � 2 P0.S/. Then\

">0

[
L�0

lim
N!1

V
N;";L
state .t; �

N
Ex
/ � Vstate.t; �/ �

\
">0

lim
N!1

V
N;";0
state .t; �

N
Ex
/ (3.13)

In particular, since lim
N!1

V
N;";0
state .t; �

N
Ex
/ �

[
L�0

lim
N!1

V
N;";L
state .t; �

N
Ex
/, actually equalities hold.

Note that Ex 2 SN0 obviously depends on N , so more rigorously we should write ExN in the above
statements. For notational simplicity we omit this N here. We also remark that at above we are not
able to switch the order of limN!1 and

T
">0

S
L�0 in the left side, or the order of limN!1 andT

">0 in the right side.
Proof (i) We first prove the right inclusion in (3.13). Fix ' 2 Vstate.t; �/, " > 0, and set
"1 WD

"
2

. Note that Astate D A0
state. By (2.14), there exists ˛� 2 M

"1
state.t; �/ such that k' �

J.t; �; ˛�I �; ˛�/k1 � "1: Recall (2.13), we have

J.t; �; ˛�I x; ˛�/ � v.�˛
�

I t; x/C "1; for all x 2 S:

For any ˛ 2 A0
state D Astate, by Theorem 3.5 we have

Ji .t; Ex; ˛
�/ � J.t; �; ˛�I xi ; ˛

�/C �0.�N /

� v.�˛
�

I t; x/C "1 C �0.�N / � v
N;L
i .t; Ex; ˛�/C "1 C 2�0.�N /:

ChooseN large enough such that �0.�N / � "
4

, then Ji .t; Ex; ˛�/ � v
N;L
i .t; Ex; ˛�/C". This implies

that ˛� 2MN
";0.t; �

N
Ex
/. Moreover,

k' � JN .t; �; �N
Ex
; ˛�/k1 � "1 C sup

i

ˇ̌̌
Ji .t; Ex; ˛

�/ � J.t; �; ˛�I xi ; ˛
�/
ˇ̌̌

� "1 C �0.�N / � "1 C
"

4
� ":

Then ' 2 V
N;";0
state .t; �

N
Ex
/ for all N large enough. That is, ' 2 limN!1 V

N;";0
state .t; �

N
Ex
/. Since

' 2 Vstate.t; �/ and " > 0 are arbitrary, we obtain the right inclusion in (3.13).
(ii) We next show the left inclusion in (3.13). Fix ' 2

\
">0

[
L�0

lim
N!1

V
N;";L
state .t; �

N
Ex
/ and " > 0.

Then, for "1 WD "
2
> 0, there exist L" > 0 and an infinite sequence fNkgk�1 such that ' 2
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V
Nk ;"1;L"
state .t; �

Nk
Ex
/ for all k � 1. Recall (3.8), for each k � 1 there exists ˛k 2M

Nk ;"1;L"
state .t; �

Nk
Ex
/

such that k'�JN .t; �; �Nk
Ex
; ˛k/k1 � "1. By Definition 3.2, we have Ji .t; Ex; ˛k/ � v

Nk ;L"
i .t; Ex; ˛k/C

"1: Similar to (i), by Theorem 3.5 we have

J.t; �; ˛kI xi ; ˛
k/ � v.�˛

k

I t; xi /C "1 C 2�L".�Nk / � v.�
˛k
I t; xi /C ";

for k large enough. That is, ˛k 2 M"
state.t; �/. Similar to (i) again, for k large enough we

have k' � J.t; �; ˛kI �; ˛k/k1 � ". Then ' 2 V "
state.t; �/. Since " > 0 is arbitrary, we obtain

' 2 Vstate.t; �/, and hence derive the left inclusion in (3.13).

Remark 3.7 (i) From Theorem 3.6 (i) we see that, for any ˛� 2 M
"
2

state.t; �/, we have ˛� 2
M
N;";0
state.t; �

N
Ex
/ when N is large enough. Moreover, by (3.9) we have the desired estimate for the

approximate equilibrium measure EP t;Ex;˛
� �
W1.�

N
s ; �

˛�

s /
�
� CL�N . This verifies the standard

result in the literature that an approximate MFE is an approximate equilibrium of the N -player
game.

(ii) From Theorem 3.6 (ii) we see that, for any ˛k 2 M
Nk ;

"
2
;L"

state .t; �
Nk
Ex
/, we have ˛k 2

M"
state.t; �/ when k is large enough, and we again have the estimate for the approximate equi-

librium measure EP t;Ex;˛
k �
W1.�

Nk
s ; �˛

k

s /
�
� CL�Nk . This is in the spirit that any limit point of the

N -player equilibrium measures is an MFE measure.

Remark 3.8 (i) We should point out that the key to obtain the convergence here is to consider
homogeneous equilibria for the N -player games. If we use heterogeneous equilibria for the N -
player games, it turns out that we will have the desired convergence when we consider relaxed
controls for the MFG, as we will do in the next two sections.

(ii) Another feature of our convergence result is the uniform Lipschitz continuity requirement
on the admissible controls. Indeed, the left inclusion in (3.13) would fail in general if we replace\
">0

[
L�0

lim
N!1

V
N;";L
state .t; �

N
Ex
/with

\
">0

lim
N!1

V
N;";1
state .t; �

N
Ex
/ or with

\
">0

lim
N!1

V
N;"
state.t; �

N
Ex
/, where

V
N;";1
state is defined in Remark (3.3) and V

N;"
state is defined similarly, by requiring ˛�; Q̨ W T � S �

P .S/ ! A in (3.6) to be measurable only. See Example 7.2 below. We refer to [32, 33, 22] for
some related convergence analysis without such regularity requirement.

(iii) We note that the above regularity requirement on the admissible controls is also crucial
for numerical computations of set values, as well as for practical implementation of the equilibria,
although these issues are not studied in the present paper.

4 Mean field games on finite space with relaxed controls

In this section we study MFG with relaxed controls, or say mixed strategies. Besides its independent
interest, our main motivation is to characterize the limit of N -player games with heterogeneous
equilibria. We shall still consider the finite space in Section 2, however, for the purpose of generality
in this section we consider path dependent setting.

4.1 The relaxed set value with path dependent controls

We start with some notations for the path dependent setting. For x D .xt /0�t�T 2 X, denote by
xt^� D .x0; � � � ; xt ; xt ; � � � ; xt / the path stopping at t and Xt WD fxt^� W x 2 Xg � X. For x; Qx 2 X,
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we say x Dt Qx if xt^� D Qxt^�. Denote Xt;x WD fQx 2 X W Qx Dt xg and X
t;x
s WD Xt;x \ Xs , for s � t .

Introduce the concatenation x˚t Qx 2 X by

.x˚t Qx/s WD xs1fs�tg C Qxs1fs>tg; and .x˚t x/s WD xs1fs�tg C x1fs>tg; x 2 S:

For each t 2 T , let P .Xt / denote the set of probability measures on .�;F X
t /, equipped with

W1.�; �/ WD
X

x2Xt

j�.x/ � �.x/j; 8�; � 2 P .Xt /;

and P0.Xt / the subset of � 2 P .Xt / with full support Xt . Again this is just for convenience of
presentation. For a measure � 2 P .X/ D P .XT /, denote �t^� WD � ıX�1t^� 2 P .Xt /. We remark
that, by abusing the notation �, here �t^� denote the joint law of the stopped process Xt^�, while in
Section 2 f��g denote the family of marginal laws.

For a path dependent function ' on T � X � P .X/, we say ' is adapted if '.t; x; �/ D
'.t; xt^�; �t^�/. Throughout this section, all the path dependent functions are required to be adapted.
In particular, the data of the game q W T �X�P .X/�A�S! .0; 1/, F W T �X�P .X/�A! R,
and G W X � P .X/! R are path dependent with q; F adapted. By adapting to the path dependent
setting, we shall still assume Assumption 2.2.

Let Arelax denote the set of path dependent adapted relaxed controls 
 W T � X ! P .A/.
Given t 2 T , � 2 P .Xt /, 
 2 Arelax , and x 2 Xt , Qx 2 Xt;x, Q
 2 Arelax , we introduce:

P t;�;
 ıX�1t^� D �; P t;�;
 .XsC1 D QxjX Ds x/ D
Z

A
q.s; x; �
 ; aI Qx/
.s; xI da/I

where �


s^� WD P t;�;
 ıX�1s^�; s � t I

P�

 It;x; Q
 .X Dt x/ D 1; P�


 It;x; Q
 .XsC1 D NxjX Ds Qx/ D
Z

A
q.s; Qx; �
 ; aI Nx/ Q
.s; QxI da/I

J.�
 I s; Qx; Q
/ WD EP�

 It;x; Q


h
G.X;�
 /C

T�1X
rDs

Z
A
F.r;X;�
 ; a/ Q
.r; X; da/

ˇ̌̌
X Ds Qx

i
I

J.t; �; 
 I x; Q
/ WD J.�
 I t; x; Q
/; v.�
 I s; Qx/ WD inf
Q
2Arelax

J.�
 I s; Qx; Q
/:

(4.1)

Definition 4.1 (i) For any t 2 T , � 2 P0.Xt /, and " > 0, let M"
relax

.t; �/ denote the set of
relaxed "-MFE 
� 2 Arelax such that

J.t; �; 
�I x; 
�/ � v.�

�

I t; x/C "; for all x 2 Xt : (4.2)

(ii) The relaxed set value of the MFG at .t; �/ is defined as:

Vrelax.t; �/ WD
\
">0

V "
relax.t; �/; where k'kXt

WD sup
x2Xt

j'.x/j; and (4.3)

V "
relax.t; �/ WD

n
' 2 L0.Xt IR/ W 9


�
2M"

relax.t; �/ s.t. k' � J.t; �; 
�I �; 
�/kXt
� "

o
:

Similarly, given T0 and  W XT0 �P .XT0/! R, as in (2.8) define

J.T0;  I t; �; 
 I x; Q
/ WD EP�

 It;x; Q


h
 .XT0^�; �



T0^�

/C

T0�1X
sDt

Z
A
F.s;X;�
 ; a/ Q
.s; X; da/

i
; (4.4)
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and let M"
relax

.T0;  I t; �/ denote the set of 
� 2 Arelax such that, 8x 2 Xt ,

J.T0;  I t; �; 

�
I x; 
�/ � v.T;  I�
 I s; x/ WD inf


2Arelax
J.T0;  I t; �; 


�
I x; 
/C ": (4.5)

Note that the tower property in (2.10) remains true for relaxed controls:

J.t; �; 
 I x; Q
/ D J.T0;  I t; �; 
 I x; Q
/; where  .y; �/ WD J.T0; �; 
 I y; Q
/: (4.6)

The DPP for Vrelax takes the following form.

Theorem 4.2 Under Assumption 2.2 (i), for any t 2 T , T0 2 Tt , and � 2 P0.Xt /,

Vrelax.t; �/ D
\
">0

n
' 2 L0.Xt IR/ W k' � J.T0;  I t; �; 


�
I �; 
�/kXt

� "

for some  2 L0.XT0 �P0.XT0/IR/ and 
� 2 Arelax such that

 .�; �

�

T0^�
/ 2 V "

relax.T0; �

�

T0^�
/; 
� 2M"

relax.T0;  I t; �/
o
:

(4.7)

Proof We shall follow the arguments in Theorem 2.4, in particular, we shall extend Proposition
2.3. Let QVrelax.t; �/ D

T
">0
QV "
relax

.t; �/ denote the right side of (4.7).
(i) We first prove QVrelax.t; �/ � Vrelax.t; �/. Fix ' 2 QVrelax.t; �/, " > 0, and set "1 WD "

4
.

Since ' 2 QV "1
relax

.t; �/, then

k' � J.T0;  I t; �; 

�
I �; 
�/kXt

� "1 for some desirable  ; 
� as in (4.7):

Since  .�; �

�

T0^�
/ 2 V

"1
relax

.T0; �

�

T0^�
/, there exists Q
� 2M

"1
relax

.T0; �

�

T0^�
/ such that

k .�; �

�

T0^�
/ � J.T0; �


�

T0^�
; Q
�I �; Q
�/kXT0 � "1:

As in (2.2) denote O
� WD 
� ˚T0 Q

� WD 
�1fs<T0g C Q


�1fs�T0g 2 Arelax . Then, for any x 2 Xt

and 
 2 Arelax , similarly to Proposition 2.3 (i) we have

J.t; �; O
�I x; 
/

D EP�

�It;x;


h
J.T0; �


�

T0^�
; Q
�IXT0^�; 
/C

T0�1X
sDt

Z
A
F.s;X;�


�

; a/
.s; X; da/
i

� EP�

�It;x;


h
J.T0; �


�

T0^�
; Q
�IXT0^�; Q


�/C

T0�1X
sDt

Z
A
F.s;X;�


�

; a/
.s; X; da/
i
� "1

� EP�

�It;x;


h
 .XT0^�; �


�

T0^�
/C

T0�1X
sDt

Z
A
F.s;X;�


�

; a/
.s; X; da/
i
� 2"1

D J.T0;  I t; �; 

�
I x; 
/ � 2"1 � J.T0;  I t; �; 
�I x; 
�/ � 3"1

D EP�

�It;x;
�

h
 .XT0^�; �


�

T0^�
/C

T0�1X
sDt

Z
A
F.s;X;�


�

; a/
�.s; X; da/
i
� 3"1

� EP�

�It;x;
�

h
J.T0; �


�

T0^�
; Q
�IXT0^�; Q


�/C

T0�1X
sDt

Z
A
F.s;X;�


�

; a/
�.s; X; da/
i
� 4"1

D J.t; �; O
�I x; O
�/ � 4"1 D J.t; �; O
�I x; O
�/ � ":
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That is, O
� 2M"
relax

.t; �/. Moreover, note that, by (4.6),

k' � J.t; �; O
�I �; O
�/kXt
� "1 C kJ.T0;  I t; �; 


�
I �; 
�/ � J.t; �; O
�I �; O
�/kXt

D "1 C sup
x2Xt

ˇ̌̌
EP�


�It;x;
� �
 .XT0^�; �


�

T0^�
/ � J.T0; �


�

T0^�
; Q
�IXT0^�; Q


�/
�ˇ̌̌
� 2"1 < ":

Then ' 2 V "
relax

.t; �/. Since " > 0 is arbitrary, we obtain ' 2 Vrelax.t; �/.
(ii) We now prove the opposite inclusion. Fix ' 2 Vrelax.t; �/ and " > 0. Let "2 > 0 be a

small number which will be specified later. Since ' 2 V
"2
relax

.t; �/, then

k' � J.t; �; 
�I �; 
�/kXt
� "2 for some 
� 2M

"2
relax

.t; �/:

Introduce  .y; �/ WD J.T0; �; 
�I y; 
�/ and recall (4.6). Then

k' � J.T0;  I t; �; 

�
I �; 
�/kXt

D k'.x/ � J.t; �; 
�I x; 
�/kXt
� "2:

Moreover, since 
� 2M
"2
relax

.t; �/, for any 
 2 Arelax and x 2 Xt , we have

J.T0;  I t; �; 

�
I x; 
�/ D J.t; �; 
�I x; 
�/

� J.t; �; 
�I x; 
 ˚T0 

�/C "2 D J.T0;  I t; �; 


�
I x; 
/C "2:

This implies that 
� 2M
"2
relax

.T0;  I t; �/. We claim further that

 .�; �

�

T0^�
/ 2 V

C"2
relax

.T0; �

�

T0^�
/; (4.8)

for some constant C � 1. Then by (4.7) we see that ' 2 QVC"2
relax

.t; �/ � QV "
relax

.t; �/ by setting
"2 �

"
C

. Since " > 0 is arbitrary, we obtain ' 2 QVrelax.t; �/.
To see (4.8), recalling (4.1), for any 
 2 Arelax we have

EP�

�It;x;
�

h
J.T0; �


�

T0^�
; 
�IXT0^�; 


�/
i
� EP�


�It;x;
�
h
J.T0; �


�

T0^�
; 
�IXT0^�; 
/

i
D J.t; �; 
�I x; 
�/ � J.t; �; 
�I x; 
� ˚T0 
/ � "2:

Then, by taking infimum over 
 2 Arelax , it follows from the standard control theory that

EP�

�Ix;
�

h
J.T0; �


�

T0^�
; 
�IXT0^�; 


�/
i
� EP�


�It;x;
�
h
v.�


�

IT0; XT0^�/
i
C "2; 8x 2 Xt :

On the other hand, it is obvious that v.�

�

IT0; Qx/ � J.T0; �

�

T0^�
; 
�I Qx; 
�/ for all Qx 2 XT0 .

Moreover, since q � cq , clearly P�

� It;x;
�.X DT0 Qx/ � c

T0�t
q , for any Qx 2 X

t;x
T0

. Thus,

0 � J.T0; �

�

T0^�
; 
�I Qx; 
�/ � v.�


�

IT0; Qx/

� CEP�

�It;x;
�

h�
J.T0; �


�

T0^�
; 
�IXT0^�; 


�/ � v.�

�

IT0; XT0^�/
�
1fXDT0 Qxg

i
� CEP�


�It;x;
�
h
J.T0; �


�

T0^�
; 
�IXT0^�; 


�/ � v.�

�

IT0; XT0^�/
i
� C"2;

where C WD c
t�T0
q . This implies that 
� 2 M

C"2
relax

.T0; �

�

T0^�
/. Then (4.8) follows directly from

 .�; �

�

T0^�
/ D J.T0; �


�

T0^�
; 
�I �; 
�/, and hence ' 2 QVrelax.t; �/.
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Remark 4.3 Consider the setting that q; F;G are state dependent, as in Section 2. There is a very
subtle issue between state dependence and path dependence of the controls.

(i) For a standard non-zero sum game problems where the players may have different cost func-
tions Fi ; Gi , if one uses state dependent controls, in general the set value does not satisfy DPP. See
a counterexample in [24]. However, with path dependent controls the set value of the game satisfies
the DPP.

(ii) In Section 2, since all players have the same cost function, as we saw the set value with state
dependent controls satisfies DPP. If we consider path dependent controls ˛ 2 Apath, the set value
will also satisfy DPP. However, the set values in these two settings are in general not equal, see
Example 7.1 in Appendix for a counterexample.

(iii) For relaxed controls, again restricting to state dependent q; F;G, it turns out that state
dependent and path dependent controls lead to the same set value, see Theorem 7.6 in Appendix.
The main reason is that the convex combination of relaxed controls remains a relaxed control, while
the controls ˛ in Section 2 does not share this property.

4.2 An alternative formulation of the relaxed mean field game

In this subsection we provide an alternative formulation for the MFG with relaxed controls. This
new formulation is motivated from the heterogenous controls for the N -player games, and thus is
crucial for the convergence result in the next section.

Let Apath denote the set of adapted path dependent controls ˛ W T � X ! A, and for each
t 2 T , At

path
D
˚
.˛.t; �/; � � � ; ˛.T � 1; �// W ˛ 2 Apath

	
. Denote „t WD P .Xt �At

path
/, and for

each ƒ 2 „t , define recursively: for s � t , x 2 Xt , and Qx 2 Xt;x,

�ƒt^�.x/ WD ƒ.x;A
t
path/; �ƒs^�.Qx/ WD

Z
At
path

s�1Y
rDt

q.r; Qx; �ƒ; ˛.r; Qx/I QxrC1/ƒ.x; d˛/: (4.9)

Here, noting that ˛ 2 At
path

can be equivalently expressed as f˛.s; Qx/ W t � s � T � 1; Qx 2 X
t;x
s g,

we are using the following interpretation on d˛: for any ' W At
path

! R,

Z
At
path

'.˛/d˛ WD

Z
A
� � �

Z
A
'
�
f˛.s; Qx/g

� T�1Y
sDt

Y
Qx2Xt;xs

d˛.s; Qx/: (4.10)

Next, for � 2 P0.Xt /, denote „t .�/ WD fƒ 2 „t W �ƒt^� D �g. Moreover, recall (4.1),

J.t;ƒI x; ˛/ WD J.�ƒI t; x; ˛/; v.t; ƒI x/ WD v.�ƒI t; x/; x 2 Xt ; ˛ 2 At
path: (4.11)

To simplify the notations, we introduce:

Qts.f��gI Qx; ˛/ WD
s�1Y
rDt

q.r; Qx; �; ˛.r; Qx/I QxrC1/: (4.12)

In particular, Qtt .f��gI x; ˛/ D 1. Then we have, for any Qx 2 Xt;x,

�ƒs .Qx/ WD
Z

At
path

Qts.�
ƒ
I Qx; ˛/ƒ.x; d˛/; P�

ƒIt;x;˛.X Ds Qx/ D Qts.�
ƒ
I Qx; ˛/: (4.13)
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Definition 4.4 For any t 2 T , � 2 P0.Xt /, and " > 0, we call ƒ� 2 „t .�/ a global "-MFE at
.t; �/, denoted as ƒ� 2M"

global
.t; �/, ifZ

At
path

ŒJ.t; ƒ�I x; ˛/ � v.t;ƒ�I x/�ƒ�.x; d˛/ � "; 8x 2 Xt : (4.14)

Note that the above ˛ is global in time, so we callƒ� a global equilibrium. Moreover, since there are
infinitely many ˛ 2 At

path
, it is hard to require J.t;ƒ�I x; ˛/�v.t;ƒ�I x/ � " for each ˛ 2 At

path
,

we thus use the above L1-type of optimality condition. For the x part, however, since there are only
finitely many x and each of them has positive probability, we may require the optimality for each x.

The main result of this subsection is the following equivalence result.

Theorem 4.5 For any t 2 T and � 2 P0.Xt /, we have

Vrelax.t; �/ D Vglobal.t; �/ WD
\
">0

V "
global.t; �/; where

V "
global.t; �/ WD

n
' 2 L0.Xt ;R/ W 9ƒ

�
2M"

global.t; �/ s.t. k' � v.t;ƒ�I �/kXt
� "

o
:

(4.15)

We shall prove the mutual inclusion of the two sides separately. First, given .t; ƒ/, we construct
a relaxed control as follows: for any t 2 T , x 2 Xt , and s � t , Qx 2 X

t;x
s ,


ƒ.s; Qx; da/ WD
1

�ƒs^�.Qx/

Z
At
path

Qts.�
ƒ
I QxI˛/ı˛.s;Qx/.da/ƒ.x; d˛/: (4.16)

On the opposite direction, given t 2 T , � 2 P0.Xt /, 
 2 Arelax , recalling (4.10) we construct

ƒ
 .x; d˛/ WD �.x/
T�1Y
sDt

Y
Qx2Xt;xs


.s; Qx; d˛.s; Qx//; 8x 2 Xt ; ˛ 2 At
path: (4.17)

In particular, the following calculation implies ƒ
 2 „t .�/:

ƒ
 .x;At
path/ D �.x/

T�1Y
sDt

Y
Qx2Xt;xs


.s; Qx;A/ D �.x/
T�1Y
sDt

Y
Qx2Xt;xs

1 D �.x/:

Lemma 4.6 For any t 2 T , � 2 P0.Xt /, and ƒ 2 „t .�/, 
 2 Arelax , we have �

ƒ

D �ƒ and
�ƒ




D �
 . Moreover,

J.t; �; 
ƒI x; 
ƒ/ D
1

�.x/

Z
At
path

J.t;ƒI x; ˛/ƒ.x; d˛/; 8x 2 Xt : (4.18)

Proof We first prove �

ƒ

s^� D �ƒs^� by induction. The case s D t follows from the definitions.
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Assume it holds for all r � s. For s C 1 and Qx 2 X
t;x
sC1, by Fubini Theorem we have

�

ƒ

.sC1/^�
.Qx/

�

ƒ

s^�.Qxs^�/
D

Z
A
q.s; Qx; �


ƒ

; aI QxsC1/
ƒ.s; Qx; da/

D

Z
A
q.s; Qx; �


ƒ

; aI QxsC1/
1

�ƒs^�.Qx/

Z
At
path

Qts.�
ƒ
I QxI˛/ı˛.s;Qx/.da/ƒ.x; d˛/

D
1

�ƒs^�.Qx/

Z
At
path

q.s; Qx; �ƒ; ˛.s; Qx/I QxsC1/Qts.�
ƒ
I QxI˛/ƒ.x; d˛/

D
1

�ƒs^�.Qx/

Z
At
path

QtsC1.�
ƒ
I QxI˛/ƒ.x; d˛/ D

�ƒ
.sC1/^�

.Qx/

�ƒs^�.Qx/
:

Then �

ƒ

.sC1/^�
D �ƒ

.sC1/^�
, and we complete the induction argument.

We next prove �ƒ



s^� D �


s^� by induction. Again the case s D t is obvious. Assume it holds for

all r < s. Now for s, recalling (4.10) we have

�ƒ



s^�.Qx/ D
Z

At
path

� s�1Y
rDt

q.r; Qx; �
 ; ˛.r; Qx/I QxrC1/
��
�.x/

T�1Y
rDt

Y
Nx2Xt;xr


.r; Nx; d˛.r; Nx//
�

D �.x/
h s�1Y
rDt

Z
A
q.r; Qx; �
 ; ˛.r; Qx/I QxrC1/
.r; Qx; d˛.r; Nx//

i
�

h s�1Y
rDt

Y
Nx2Xt;xr nfQxg


.r; Nx;A/
i
�

h T�1Y
rDs

Y
Nx2Xt;xr


.r; Nx;A/
i

D �.x/
s�1Y
rDt

Z
A
q.r; Qx; �
 ; aI QxrC1/
.r; Qx; da/ D �



s^�.Qx/:

We finally prove (4.18). For each s � t and Qx 2 X
t;x
s , by Fubini Theorem again we haveZ

A
F.s; Qx; �ƒ; a/
ƒ.s; Qx; da/ D

Z
A

F.s; Qx; �ƒ; a/
�ƒs^�.Qx/

Z
At
path

Qts.�
ƒ
I QxI˛/ı˛.s;Qx/.da/ƒ.x; d˛/

D
1

�ƒs^�.Qx/

Z
At
path

F.s; Qx; �ƒ; ˛.s; Qx//Qts.�
ƒ
I QxI˛/ƒ.x; d˛/

By (4.1) we have P�
ƒIt;x;
ƒ.X Ds Qx/ D

�ƒs^�.Qx/
�.x/ . Thus

J.t; �; 
ƒI x; 
ƒ/

D
1

�.x/

h X
Qx2Xt;x

G.Qx; �ƒ/�ƒT^�.Qx/C
T�1X
sDt

X
Qx2Xt;xs

�ƒs^�.Qx/
Z

A
F.s; Qx; �ƒ; a/
ƒ.s; Qx; da/

i
D

1

�.x/

Z
At
path

h X
Qx2Xt;x

G.Qx; �ƒ/QtT .�
ƒ
I QxI˛/

C

T�1X
sDt

X
Qx2Xt;xs

F.s; Qx; �ƒ; ˛.s; Qx//Qts.�
ƒ
I QxI˛/

i
ƒ.x; d˛/:
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This implies (4.18) immediately.

Remark 4.7 We can actually show that 
 .ƒ

 / D 
 for all 
 2 Arelax , see Appendix. However, it

is not clear that we would have ƒ.

ƒ/ D ƒ for all ƒ 2 „t .�/.

Proof of Theorem 4.5. Since � 2 P0.Xt / has full support, then c� WD inf
x2Xt

�.x/ > 0.

(i) We first prove Vglobal.t; �/ � Vrelax.t; �/. Fix ' 2 Vglobal.t; �/ and " > 0. Let
"1 > 0 be a small number which will be specified later. Since ' 2 V

"1
global

.t; �/, there exists

ƒ� 2 M
"1
global

.t; �/ such that k' � v.t;ƒ�I �/kXt
� "1. Set 
� WD 
ƒ

�

. For any x 2 Xt , since

�

�

D �ƒ
�

, by (4.1), (4.11) we have v.�

�

I t; x; 
�/ D v.t;ƒ�I x/, and, by (4.18), (4.14),

J.t; �; 
�I x; 
�/ � v.t;ƒ�I x/ D
1

�.x/

Z
At
path

ŒJ.t; ƒ�I x; ˛/ � v.t;ƒ�I x/�ƒ�.x; d˛/ �
"1

c�
� ";

provided "1 > 0 is small enough. This implies 
� 2M"
relax

.t; �/.
Moreover, it is clear now that, for any x 2 Xt and for a possibly smaller "1,ˇ̌
'.x/ � J.t; �; 
�I x; 
�/

ˇ̌
� "1 C

ˇ̌
v.t;ƒ�I x/ � J.t; �; 
�I x; 
�/

ˇ̌
� "1 C

"1

c�
� ";

Then ' 2 V "
relax

.t; �/, and since " > 0 is arbitrary, we obtain ' 2 Vrelax.t; �/.
(ii) We next prove Vrelax.t; �/ � Vglobal.t; �/. Fix ' 2 Vrelax.t; �/, " > 0, and set "2 WD "

2
.

Since ' 2 V
"2
relax

.t; �/, there exists 
� 2M
"2
relax

.t; �/ such that k' � J.t; �; 
�I �; 
�/kXt
� "2.

Set ƒ� WD ƒ

�

, then �ƒ
�

D �

�

. Since 
� 2M
"2
relax

.t; �/, we have

j'.x/ � v.t;ƒ�I x/j D j'.x/ � v.�

�

I t; x/j � 2"2 � "; 8x 2 Xt :

Moreover, note that, by (4.18) again,Z
At
path

ŒJ.t; ƒ�I x; ˛/ � v.t;ƒ�I x/�ƒ�.x; d˛/

D �.x/ŒJ.t; �; 
�I x; 
�/ � v.t;ƒ�I x/� � �.x/"2 � "2 � ":
(4.19)

This implies ' 2 V "
global

.t; �/, and hence by the arbitrariness of ", ' 2 Vglobal.t; �/.

5 The N -player game with heterogeneous equilibria

In this section we drop the requirement ˛1 D � � � D ˛N for the N -player game, and show that the
corresponding set value converges to Vrelax , which in general is strictly larger than Vstate. We
note that we shall still use the pure strategies, rather than mixed strategies, for the N -player game.
Moreover, since we used path dependent controls in Section 4, we shall also use path dependent
controls here.
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5.1 The N -player game

Let �N and EX be as in Section 3, and denote

�Nt^� WD �
N

t; EXt^�
; where �N

t;Ex WD
1

N

NX
iD1

ıxi 2 P .Xt /; Ex D .x1; � � � ; xN / 2 XNt : (5.1)

Similarly to (3.7), for the convenience of the presentation we introduce

XN0;t WD
n
Ex 2 XNt W supp .�N

t;Ex/ D Xt

o
; PN .Xt / WD

n
�N
t;Ex W Ex 2 XN0;t

o
: (5.2)

We shall consider path dependent symmetric controls: A
t;1
path

WD
S
L�0A

t;L
path

, where

A
t;L
path

WD

n
˛ W ft; � � � ; T � 1g �X �P .X/! A

ˇ̌̌
˛ is adapted and

uniformly Lipschitz continuous in � (under W1) with Lipschitz constant L
o
:

Given t 2 T , Ex 2 XN0;t , and Ę D .˛1; � � � ; ˛N / 2 .At;1
path

/N , introduce, for s � t ,

P t;Ex; Ę. EX Dt Ex/ D 1; P t;Ex; Ę. EXsC1 D Ex
00
j EX Ds Ex0/ D

NY
iD1

q.s; x0i ; �N ; ˛i .s; x0i ; �N /I x00i /;

Ji .t; Ex; Ę/ WD EP t;Ex; Ę
h
G.X i ; �N /C

T�1X
sDt

F.s;X i ; �N ; ˛i .s; X i ; �N //
i
I

v
N;L
i .t; Ex; Ę/ WD inf

Q̨2A
t;L
path

Ji .t; Ex; Ę�i ; Q̨ /; i D 1; � � � ; N:

(5.3)

Here . Ę�i ; Q̨ / is the vector obtained by replacing ˛i in Ę with Q̨ .

Definition 5.1 For any " > 0;L � 0, we say Ę 2 .At;L
path

/N is an ."; L/-equilibrium of the N -

player game at .t; Ex/, denoted as Ę 2M
N;";L
hetero

.t; Ex/, if:

1

N

NX
iD1

�
Ji .t; Ex; Ę/ � vN;Li .t; Ex; Ę/

�
� ": (5.4)

Here, since there are N players and we will send N ! 1, similar to (4.14) we do not require the
optimality for each player. In fact, by (5.4) one can easily show that

1

N

ˇ̌̌˚
i D 1; � � � ; N W Ji .t; Ex; Ę/ � vN;Li .t; Ex; Ę/ �

p
"
	ˇ̌̌
�
p
": (5.5)

This is exactly the .
p
";
p
"/-equilibrium in [11].

We then define the set value of the N -player game with heterogeneous equilibria:

VN
hetero.t; Ex/ WD

\
">0

V
N;"
hetero

.t; Ex/ WD
\
">0

[
L�0

V
N;";L
hetero

.t; Ex/;

where V
N;";L
hetero

.t; Ex/ WD
n
' 2 L0.Xt IR/ W 9 Ę 2M

N;";L
hetero

.t; Ex/ such that

max
x2Xt

min
fi W xiDxg

ˇ̌
'.x/ � vN;Li .t; Ex; Ę/

ˇ̌
� "

o
:

(5.6)
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Remark 5.2 (i) An alternative definition of V
N;";L
hetero

.t; Ex/ is to require ' satisfying

max
iD1;��� ;N

ˇ̌
'.xi / � vN;Li .t; Ex; Ę/

ˇ̌
D max

x2Xt

max
fi W xiDxg

ˇ̌
'.x/ � vN;Li .t; Ex; Ę/

ˇ̌
� ": (5.7)

Indeed, the convergence result Theorem 5.3 below remains true if we use (5.7). However, in general
it is possible that xi D xj but vN;Li .t; Ex; Ę/ ¤ vN;Lj .t; Ex; Ę/. Then, by fixing N and sending "! 0,

under (5.7) we would have VN
hetero

.t; Ex/ WD
T
">0 V

N;"
hetero

.t; Ex/ D ;.
(ii) In the homogeneous case, vN;Li .t; Ex; Ę/ D v

N;L
j .t; Ex; Ę/ whenever xi D xj , so we don’t

have this issue in (3.8).
(iii) Note that �N

t;Ex D �N
t;Ex0 if and only if Ex is a permutation of Ex0, and one can easily verify

that vN;Li .t; Ex; Ę/ D v
N;L
�.i/

.t; .x�.1/; � � � ; x�.N//; .˛�.1/; � � � ; ˛�.N/// for any permutation � on

f1; � � � ; N g, . Then, similar to the homogenous case, V
N;";L
hetero

.t; Ex/ is invariant in �N
t;Ex and we will

denote is as V
N;";L
hetero

.t; �N
t;Ex/.

The following convergence result of the set value is in the same spirit of Theorem 3.6.

Theorem 5.3 Let Assumption 2.2 hold and �N
t;Ex 2 PN .Xt /! � 2 P0.Xt / under W1. Then\

">0

[
L�0

lim
N!1

V
N;";L
hetero

.t; �N
t;Ex/ � Vrelax.t; �/ �

\
">0

lim
N!1

V
N;";0
hetero

.t; �N
t;Ex/: (5.8)

In particular, since lim
N!1

V
N;";0
hetero

.t; �N
t;Ex/ �

[
L�0

lim
N!1

V
N;";L
hetero

.t; �N
t;Ex/, actually equalities hold.

Unlike Theorem 3.6, here the N -player game and the MFG take different types of controls Ę
and 
 , respectively. The key for the convergence is the global formulation in Subsection 4.2 for
MFG. Indeed, given t 2 T , Ex 2 XN0;t , and Ę 2 .At;L

path
/N , the N -player game is naturally related to

the following ƒN 2 P .Xt �A
t;L
path

/:

ƒN .x; d˛/ WD
1

N

X
i2I.x/

ı˛i .d˛/; where I.x/ WD
˚
i D 1; � � � ; N W xi D x

	
; x 2 Xt : (5.9)

By the symmetry of the problem, there exists a function JN , independent of i , such that

Ji .t; Ex; Ę/ D JN .ƒN I t; xi ; ˛i /; i D 1; � � � ; N: (5.10)

We shall use this and Theorem 4.5 to prove Theorem 5.3 in the rest of this section. We also make
the following obvious observation:

ƒN .x;At
path/ D

jI.x/j
N
D �N

t;Ex.x/; 8x 2 Xt : (5.11)

Remark 5.4 (i) In this section we are using symmetric controls and we obtain the convergence
in Theorem 5.3. If we use full information controls ˛i .t; EX/, as observed in [32] in terms of the
equilibrium measure, one may expect the limit set value will be strictly larger than Vrelax . It will
be interesting to find an appropriate notion of MFE so that the corresponding MFG set value will
be equal to the above limit, in the sense of Theorem 5.3.

(ii) While the convergence in Theorem 5.3 is about set values, the proofs in the rest of this
section confirm the convergence of the approximate equilibria as well, exactly in the same manner
as in Remark 3.7.
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5.2 From N -player games to mean field games

In this subsection we prove the left inclusion in (5.8). Notice that the ƒN in (5.9) is defined on
A
t;L
path

, rather than At
path

D A
t;0
path

. For this purpose, recall (4.12) and introduce

�Nt^�.x/ WD �
N
t;Ex.x/; �

N
s^�.Qx/ WD

1

N

X
i2I.x/

Qts.�
N
I Qx; ˛i .�; �; �N //; x 2 Xt ; Qx 2 Xt;xs ; s � t I

NƒN .x; d˛/ WD
�.x/
jI.x/j

X
i2I.x/

ı N̨ i .d˛/; where N̨ i .s; Qx/ WD ˛i .s; Qx; �N /:
(5.12)

Then it is obvious that N̨ i 2 At
path

and NƒN 2 „t .�/. Moreover, when � D �N
t;Ex, by (4.13) and

(5.11) it is straightforward to verify by induction that � Nƒ
N

D �N .

Theorem 5.5 Let Assumption 2.2 (ii) hold. Then, for any L � 0, there exists a constant CL,
depending only on T; d;Lq , and L such that, for any t 2 T , Ex 2 XN0;t , � 2 P0.Xt /, Ę 2

.A
t;L
path

/N ; Q̨ 2 A
t;L
path

, and for the �N ; NƒN defined in (5.12), we have

max
1�i�N

max
t�s�T

EP t;Ex;. Ę
�i ; Q̨ /�

W1.�
N
s^�; �

NƒN

s^� /
�
� CL�N ; �N WD W1.�

N
t;Ex; �/C

1
p
N
: (5.13)

Proof Fix i and denote Q̨j WD j̨ for j ¤ i , and Q̨ i WD Q̨ i . We first show that

�s WD EPN �W1.�
N
s^�; �

N
s^�/

�
�
CL
p
N
; where PN WD P t;Ex;. Ę

�i ; Q̨/: (5.14)

Indeed, for s � t , by the conditional independence of fXjsC1g1�j�N under PN , conditional on Fs ,
it follows from the same arguments as in (3.11) that

�sC1 D EPN
h
EPN

Fs

�
W1.�

N
.sC1/^�; �

N
.sC1/^�/

�i
�

C
p
N
C C

X
x2XsC1

EPN
hˇ̌̌ 1
N

NX
jD1

PN .Xj DsC1 xjFs/ � �N.sC1/^�.x/
ˇ̌̌i
:

Note that,ˇ̌̌ 1
N

NX
jD1

PN .Xj DsC1 xjFs/ �
1

N

NX
jD1

1fXjDsxgq.s; x; �
N ; j̨ .s; x; �N /I xsC1/

ˇ̌̌
D

ˇ̌̌ 1
N

NX
jD1

1fXjDsxg
�
q.s; x; �N ; Q̨j .s; x; �N /I xsC1/ � q.s; x; �N ; j̨ .s; x; �N /I xsC1/

�ˇ̌̌
� CLW1.�

N
s^�; �

N
s^�/C

1

N
D CL�s C

1

N
;
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where in the last inequality, the first term is due to the sum over all j ¤ i . Then

�sC1 � CL�s C
C
p
N
C EPN

h X
x2XsC1

ˇ̌̌ 1
N

NX
jD1

1fXjDsxgq.s; x; �
N ; j̨ .s; x; �N /I xsC1/

�
1

N

X
j2I.xt^�/

Qts.�
N
I x; N̨j /q.s; x; �N ; j̨ .s; x; �N /I xsC1/

ˇ̌̌i
D CL�s C

C
p
N
C EPN

h X
x2Xs

ˇ̌̌ 1
N

NX
jD1

1fXjDsxg �
1

N

X
j2I.xt^�/

Qts.�
N
I x; N̨j /

ˇ̌̌i
D CL�s C

C
p
N
C EPN

h X
x2Xs

ˇ̌
�Ns^�.x/ � �

N
s^�.x/

ˇ̌i
� CL�s C

C
p
N
:

It is obvious that �t D 0. Then by induction we obtain (5.14).
Next, denote N�s WD W1.�Ns^�; �

NƒN

s^� /. For s � t , by (5.12), (4.13), and (4.12), we have

N�sC1 D
X

x2Xt

X
Qx2Xt;x

sC1

ˇ̌
�N.sC1/^�.Qx/ � �

NƒN

.sC1/^�.Qx/
ˇ̌

D

X
x2Xt

X
Qx2Xt;x

sC1

ˇ̌ 1
N

X
j2I.x/

QtsC1.�
N
I Qx; N̨j / �

�.x/
jI.x/j

X
j2I.x/

QtsC1.�
NƒN
I Qx; N̨j /

ˇ̌
D

X
x2Xt

X
Qx2Xt;x

sC1

h 1
N

X
j2I.x/

ˇ̌
QtsC1.�

N
I Qx; N̨j / �QtsC1.�

NƒN
I Qx; N̨j /

ˇ̌
C

ˇ̌̌ 1
N
�
�.x/
jI.x/j

ˇ̌̌ X
j2I.x/

QtsC1.�
NƒN
I Qx; N̨j /

i
� C

X
x2Xt

X
Qx2Xt;x

sC1

h 1
N

X
j2I.x/

sX
rDt

W1.�
N
r^�; �

NƒN

r^� /C
ˇ̌̌ 1
N
�
�.x/
jI.x/j

ˇ̌̌
jI.x/j

i

� C

sX
rDt

N�r C C
X

x2Xt

ˇ̌
�N
t;Ex.x/ � �.x/

ˇ̌
� C

sX
rDt

N�r :

Obviously Nkt D W1.�Nt;Ex; �/. Then by induction we have sup
t�s�T

N�s � CW1.�
N
t;Ex; �/. This, together

with (5.14), implies (5.13) immediately.

Theorem 5.6 For the setting in Theorem 5.5 and assuming further Assumption 2.2 (iii), there exists
a modulus of continuity function �L, depending on T; d;Lq , C0, �, L, s.t.ˇ̌̌
Ji .t; Ex; . Ę

�i ; Q̨ // � J.t; NƒN I xi ; Q̨ .�; �N //
ˇ̌̌
C
ˇ̌
v
N;L
i .t; Ex; Ę/ � v.� Nƒ

N

I t; xi /
ˇ̌
� �L.�N /: (5.15)

Moreover, assume Ę 2M
N;"1;L
hetero

.t; Ex/ for some "1 > 0, thenZ
At
path

ŒJ.t; NƒN I x; ˛/ � v.t; NƒN I x/� NƒN .x; d˛/ � "1 C 2�L.�N /; 8x 2 Xt : (5.16)

In particular, if "1 C 2�L.�N / � ", then NƒN 2M"
global

.t; �/.
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Proof First, given Theorem 5.5, (5.15) follows from the arguments in Theorem 3.5. Then, for
Ę 2M

N;"1;L
hetero

.t; Ex/ and x 2 Xt , by (5.4) we haveZ
At
path

ŒJ.t; NƒN I x; ˛/ � v.t; NƒN I x/� NƒN .x; d˛/ D
1

N

X
i2I.x/

�
J.t; NƒN I x; N̨ i / � v.t; NƒN I x/

�
�
1

N

X
i2I.x/

hˇ̌
J.t; NƒN I xi ; N̨ i / � Ji .t; Ex; Ę/

ˇ̌
C
�
Ji .t; Ex; Ę/ � vN;Li .t; Ex; Ę/

�
C
ˇ̌
v
N;L
i .t; Ex; Ę/ � v.� Nƒ

N

I t; xi /
ˇ̌i

� �L.�N /C "1 C �L.�N / D "1 C 2�L.�N /:
Proof of Theorem 5.3: the left inclusion. We first fix an arbitrary function ' 2T
">0

S
L�0 limN!1 V

N;";L
hetero

.t; �N
t;Ex/, " > 0, and set "1 WD "

2
. Then there exists L" � 0

and and a sequence Nk ! 1 (possibly depending on ") such that ' 2 V
Nk ;"1;L"1
hetero

.t; �
Nk
t;Ex /,

for all k � 1. Now choose k large enough so that 2�L".�Nk / � "1. By (5.6) there exists
Ę 2 M

Nk ;"1;L"
hetero

.t; Ex/ such that maxx2Xt
mini2I.x/ j'.x/ � v

N;L
i .t; Ex; Ę/j � "1. By Theorem 5.6

we see that NƒNk 2M"
global

.t; �/ and, by (5.15),

k' � v.�
NƒN
I t; �/kXt

� max
x2Xt

min
i2I.x/

hˇ̌
'.x/ � vN;Li .t; Ex; Ę/

ˇ̌
C
ˇ̌
v
N;L
i .t; Ex; Ę/ � v.� Nƒ

N

I t; x/
ˇ̌i

� "1 C �L".�N / � ":

Then ' 2 V "
global

.t; �/. Since " > 0 is arbitrary, by Theorem 4.5 we get ' 2 Vrelax.t; �/.

5.3 From mean field games to N -player games

We now turn to the right inclusion in (5.8). Fix t 2 T , Ex 2 XN0;t , � 2 P0.Xt /, and 
 2 Arelax . Our
goal is to construct a desired Ę 2 .At;0

path
/N . However, since Ę, or equivalently the corresponding

ƒN , is discrete, we need to discretize 
 first. We note that it is slightly easier to discretize 
 than a
general ƒ 2 „t .�/.

First, given " > 0, there exists a partition A D [
n"
kD0

Ak with n" depending on " (and 
 ) such
that, for some arbitrarily fixed ak 2 Ak , k D 0; � � � ; n",


.s; x; A0/ � ";8s 2 Tt ; x 2 Xs; and ja � akj � ";8a 2 Ak; k D 1; � � � ; n": (5.17)

Denote by A
t;"
path

the subset of ˛ 2 A
t;0
path

taking values in A" WD fak W k D 0; � � � ; n"g. Define


".s; x; da/ WD
n"X
kD0


.s; x; Ak/ıak .da/: (5.18)

Recall (4.17), we see that supp .ƒ

"

.x; d˛// D A
t;"
path

� A
t;0
path

for all x 2 Xt .
Next, recall (5.11) that N�N

t;Ex.x/ D jI.x/j is a positive integer for all x 2 Xt . Let ƒ"
t;Ex 2

P .Xt �A
t;"
path

/ be a modification of ƒ

"

such that,

ƒ"
t;Ex.x;A

t;"
path

/ D �N
t;Ex.x/ and Nƒ"

t;Ex.x; ˛/ is an integerI

jƒ"
t;Ex.x; ˛/ �ƒ


".x; ˛/j �
1

N
C j�N

t;Ex.x/ � �.x/jI
8.x; ˛/ 2 Xt �A

t;"
path

: (5.19)
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Note that, since A
t;"
path

is finite, such a construction is easy.

We now construct Ę 2 .At;"
path

/N , which relies on 
" and hence on ". Note thatX
˛2A

t;"
path

ŒNƒ"
t;Ex.x; ˛/� D Nƒ

"
t;Ex.x;A

t;"
path

/ D N�N
t;Ex.x/ D jI.x/j;

and each Nƒ"
t;Ex.x; ˛/ is an integer. Let I.x/ D [˛2A

t;"
path

I.x; ˛/ be a partition of I.x/ such that

jI.x; ˛/j D Nƒ"
t;Ex.x; ˛/. We then set

˛i WD ˛; i 2 I.x; ˛/; .x; ˛/ 2 Xt �A
t;"
path

: (5.20)

Let ƒN be the one defined by (5.9) corresponding to this Ę. It is clear that ƒN D ƒ"
t;Ex.

Theorem 5.7 (i) Let Assumption 2.2 (ii) hold. Then there exists a constant C , depending only on
T; d;Lq , such that, for any t 2 T , Ex 2 XN0;t , � 2 P0.Xt /, 
 2 Arelax , " > 0, and for the

Ę 2 .A
t;"
path

/N constructed above, we have, for the �N in (5.13) and for any Q̨ 2 A
t;0
path

,

max
1�i�N

max
t�s�T

EP t;Ex;. Ę
�i ; Q̨ /�

W1.�
N
s^�; �



s^�/

�
� C"C C"�N ; (5.21)

where C" may depend on " as well.
(ii) Assume further Assumption 2.2 (iii), then there exists a modulus of continuity function �0,

depending only on T; d;Lq , C0, and �, such that,ˇ̌̌
Ji .t; Ex; . Ę

�i ; Q̨ // � J.�
 I t; xi ; Q̨ /
ˇ̌̌
C
ˇ̌
v
N;0
i .t; Ex; Ę/ � v.�
 I t; xi /

ˇ̌
� �0

�
C"C C"�N

�
: (5.22)

Moreover, assume 
 2M"
relax

.t; �/, then

1

N

NX
iD1

�
Ji .t; Ex; Ę/ � vN;0i .t; Ex; Ę/

�
� "C 2�0

�
C"C C"�N

�
; 8x 2 Xt : (5.23)

In particular, this means that Ę 2M
N;Q";0
hetero

.t; Ex/ with Q" WD "C 2�0
�
C"C C"�N

�
.

Proof (i) We first show by induction that

�s WD W1
�
�


s^�; �


"

s^�

�
� C"; s D t; � � � ; T: (5.24)

Indeed, it is obvious that �t D 0. For s � t , by (4.1), (5.17), and (5.18), we have

�sC1 D
X

x2XsC1

ˇ̌
�



.sC1/^�
.x/ � �


"

.sC1/^�
.x/
ˇ̌

D

X
x2Xs ;x2S

ˇ̌̌
�


s^�.x/

Z
A
q.s; x; �
 ; aI x/
.s; x; da/ � �


"

s^�.x/
Z

A
q.s; x; �


"

; aI x/
".s; x; da/
ˇ̌̌

�

X
x2Xs ;x2S

hˇ̌
�


s^�.x/ � �


"

s^�.x/
ˇ̌
C

n"X
kD1

Z
Ak

ˇ̌
q.s; x; �
 ; aI x/ � q.s; x; �


"

; akI x/
ˇ̌

.s; x; da/

C

Z
A0

q.s; x; �
 ; aI x/
.s; x; da/C
Z
A0

q.s; x; �

"

; aI x/
".s; x; da/

� C�s C C":

29



Then by induction we have (5.24).
We next show by induction that, recalling (5.12),

N�s WD W1
�
�Ns^�; �


"

s^�

�
� C"�N ; s D t; � � � ; T: (5.25)

Indeed, N�t D W1.�Nt;Ex; �/. For s � t , noting that ˛i 2 A
t;"
path

� A
t;0
path

and recalling from Lemma

4.6 that �ƒ

"

D �

"

, then by (5.12) and (4.13) that

N�sC1 D W1
�
�NsC1^�; �

ƒ

"

.sC1/^�

�
D

X
x2Xt

X
Qx2Xt;x

sC1

ˇ̌̌ 1
N

X
˛2A

t;"
path

X
i2I.x;˛/

QtsC1.�
N
I Qx; ˛/ �

Z
At
path

QtsC1.�

"
I Qx; ˛/ƒ


"

.x; d˛/
ˇ̌̌

D

X
x2Xt

X
Qx2Xt;x

sC1

ˇ̌̌ X
˛2A

t;"
path

�
ƒ"
t;Ex.x; ˛/Q

t
sC1.�

N
I Qx; ˛/ �ƒ


"

.x; ˛/QtsC1.�

"
I Qx; ˛/

�ˇ̌̌
�

X
x2Xt

X
Qx2Xt;x

sC1

X
˛2A

t;"
path

hˇ̌
ƒ"
t;Ex.x; ˛/ �ƒ


".x; ˛/
ˇ̌
QtsC1.�

N
I Qx; ˛/

Cƒ

"

.x; ˛/
ˇ̌
QtsC1.�

N
I Qx; ˛/ �QtsC1.�


"
I Qx; ˛/

ˇ̌i
:

Then, by (5.19) and noting that C" WD jA
t;"
path
j is independent of N , we have

N�sC1 �
X

x2Xt

X
Qx2Xt;x

sC1

X
˛2A

t;"
path

h
�NQ

t
sC1.�

N
I Qx; ˛/C Cƒ


"

.x; ˛/
sX
rDt

W1
�
�Nr^�; �


"

r^�

�i

� C"�N C C

sX
rDt

N�r :

This implies (5.25) immediately.
Finally, combining (5.24), (5.25), and (5.13), we obtain (5.21).
(ii) First, similar to (5.15), by (5.21) we have (5.22) following from the arguments in Theorem

3.5. Next, for 
 2M"
relax

.t; �/, by (4.19) we haveƒ
 2M"
global

.t; �/. Then (5.23) follows from
similar arguments as those for (5.16).

Proof of Theorem 5.3: the right inclusion. Fix ' 2 Vrelax.t; �/ and " > 0. Let "1 > 0

be a small number which will be specified later. There exists 
 2 M
"1
relax

.t; �/ such that k' �
J.t; �; 
 I �; 
/kXt

� "1. Let 
"1 and Ę be constructed as above. By (5.23) we have

1

N

NX
iD1

�
Ji .t; Ex; Ę/ � vN;0i .t; Ex; Ę/

�
� "1 C 2�0

�
C"1 C C"1�N

�
; 8x 2 Xt :

Choose "1 small enough such that "1C 2�0.C"1C "1/ < ". Then, for all N large enough such that
�N �

"1
C"1

, we have 1
N

PN
iD1

�
Ji .t; Ex; Ę/ � vN;0i .t; Ex; Ę/

�
� ". That is, Ę 2 V

N;";0
hetero

.t; �N
t;Ex/ for all

N large enough. Then, following the same arguments as those in the proof for the left inclusion, we
can easily get ' 2 V

N;";0
hetero

.t; �N
t;Ex/ for all N large enough, and thus ' 2 limN!1 V

N;";0
hetero

.t; �N
t;Ex/.

Since " > 0 is arbitrary, we get the desired inclusion.
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6 A continuous time model with controlled diffusions

In this section we study a continuous time model where the state process is a controlled diffusion
with closed loop drift controls. In this case the laws of the controlled state process are all equivalent.
The volatility control case involves mutually singular measures (corresponding to degenerate q in
the discrete setting) and is much more challenging. We shall leave that for future research. To ensure
the convergence, we consider state dependent homogeneous controls for theN -player games, as we
did in Section 3.

6.1 The mean field game and the dynamic programming principle

Let T > 0 be a fixed terminal time, .�;F ;F D fFtg0�t�T ;P / a filtered probability space where
F0 is atomless; B a d -dimensional Brownian motion; and the set A � Rd0 a Borel measurable
set. The state process X will also take values in Rd . Its law lies in the space P2 WD P2.R

d /

equipped with the 2-Wasserstein distance W2. We remark that in the finite state space case W1 and
W2 are equivalent, while in continuous models they are not. In fact, at below we shall require W1-
regularity, which is stronger than the W2-regularity, and obtain W1-convergence, which is weaker
than the W2-convergence. This is not surprising in the mean field literature, see, e.g. [38]. The
main advantage of the W1-distance is the following well known representation, see e.g. [13]: for
any �; Q� 2 P1.R

d /,

W1.�; Q�/ D sup
n Z

Rd
'.x/Œ�.dx/� Q�.dx/� W ' 2 CLip.R

d / s.t. j'.x/�'. Qx/j � jx� Qxj
o
: (6.1)

HereCLip.Rd / denote the set of uniformly Lipschitz continuous functions ' W Rd ! R. Moreover,
for each .t; �/ 2 Œ0; T ��P2, let L2.t; �/ denote the set of Ft -measurable random variables � whose
law (under P ) L� D �.

We consider coefficients .b; f / W Œ0; T � � Rd � P2 � A ! .Rd ;R/ and g W Rd � P2 ! R.
Throughout this section, the following assumptions will always be in force.

Assumption 6.1 (i) b; f; g are Borel measurable in t and bounded by C0 (for simplicity);
(ii) b; f; g are uniformly Lipschitz continuous in .x; �; a/ with a Lipschitz constant L0, where

the Lipschitz continuity in � is under W1.

Let Acont denote the set of admissible controls ˛ W Œ0; T � � Rd ! A which is measurable in
t and Lipschitz continuous in x, with the Lipschitz constant L˛ possibly depending on ˛. Given
.t; �/ 2 Œ0; T � �P2, � 2 L2.t; �/, and ˛ 2 Acont , consider the McKean-Vlasov SDE:

X t;�;˛s D � C

Z s

t

b.r; X t;�;˛r ; �˛r ; ˛.r; X
t;�;˛
r //dr C Bs � Bt ; �˛s WD L

X
t;�;˛
s

: (6.2)

By the required Lipschitz continuity, the above SDE is wellposed, and it is obvious that �˛t D �

and �˛s does not depend on the choice of � 2 L2.t; �/. Then, when only the law is involved, by
abusing the notations we may also denote X t;�;˛ as X t;�;˛.
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Next, for any x 2 Rd , and Q̨ 2 Acont , we introduce

J.t; �; ˛I x; Q̨ / WD J.�˛I t; x; Q̨ /; v.�˛I s; x/ WD inf
Q̨2Acont

J.�˛I s; x; Q̨ /; s � t; where

X�
˛Is;x; Q̨

r D x C

Z r

s

b.l; X
�˛Is;x; Q̨

l
; �˛l ; Q̨ .l; X

�˛Is;x; Q̨

l
//d l C Br � Bs; r � sI

J.�˛I s; x; Q̨ / WD E
h
g.X

�˛Is;x; Q̨
T ; �˛T /C

Z T

s

f .r; X�
˛Is;x; Q̨

r ; �˛r ; Q̨ .r; X
�˛Is;x; Q̨
r //dr

i
:

(6.3)

Here we abuse the notations by using the same notations as in the discrete setting. Clearly
u.s; x/ WD J.�˛I s; x; Q̨ / and v.s; x/ WD v.�˛I s; x/ satisfy the following linear PDE and stan-
dard HJB equation on Œt; T � �Rd , respectively, with parameter �˛:

@su.s; x/C
1

2
tr
�
@xxu.s; x/

�
C b.s; x; �˛s ; Q̨ .s; x// � @xu.s; x/C f .s; x; �

˛
s ; Q̨ .s; x// D 0I

@tv.s; x/C
1

2
tr
�
@xxv.s; x/

�
C inf
a2A

�
b.s; x; �˛s ; a/ � @xv.s; x/C f .s; x; �

˛
s ; a/

�
D 0I

u.T; x/ D v.T; x/ D g.x; �˛T /:

(6.4)

Definition 6.2 Fix .t; �/ 2 Œ0; T � � P2. For any " > 0, we say ˛� 2 Acont is an "-MFE at .t; �/,
denoted as ˛� 2M"

cont .t; �/, ifZ
Rd

�
J.t; �; ˛�I x; ˛�/ � v.�˛

�

I t; x/
�
�.dx/ � ": (6.5)

Remark 6.3 Similar to (5.4) and (5.5), here we do not require ˛� to be optimal for every player x.
In fact, alternatively, we may replace (6.5) with

�
n
x W jJ.t; �; ˛�I x; ˛�/ � v.�˛

�

I t; x/j > "
o
< ": (6.6)

The intuition is that, since there are infinitely many players, we shall tolerate that a small portion of
players may not be happy for the ˛�, as in [11], and their possible deviation from ˛� won’t change
the equilibrium measure �˛

�

significantly. We note that, although (6.6) and (6.5) are not equivalent
for fixed ", they define the same set value in (6.8) below, and the proofs are slightly easier by using
(6.5).

However, if we require the "-optimality for �-a.e. x, namely the probability in the left side of
(6.6) becomes 0, then the set value will be different and may not satisfy the DPP. Such difference
would disappear in the discrete model though.

To define the set value, we need the following simple but crucial regularity result, whose proof
is postponed to Appendix.

Lemma 6.4 Let Assumption 6.1 hold. There exists a constant C > 0, depending only on
T; d; C0; L0, such that, for any t; �; ˛; Q̨ and s � t ,ˇ̌

J.�˛I Q̨ ; s; x/ � J.�˛I Q̨ ; s; Qx/
ˇ̌
C
ˇ̌
v.�˛I s; x/ � v.�˛I s; Qx/

ˇ̌
� C jx � Qxj; 8x; Qx: (6.7)
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We then define the set value of the mean field game:

Vcont .t; �/ WD
\
">0

V "
cont .t; �/; where

V "
cont .t; �/ WD

n
' 2 CLip.R

d / W there exists ˛� 2M"
cont .t; �/ such thatZ

Rd

ˇ̌
'.x/ � J.t; �; ˛�I x; ˛�/

ˇ̌
�.dx/ � "

o
:

(6.8)

In particular, since J.t; �; ˛�I x; ˛�/ � v.�˛
�

I t; x/, then by (6.7) and (6.5) we see that both
J.t; �; ˛�I �; ˛�/ and v.�˛

�

I t; �/ belong to Vcont .t; �/. Moreover, again due to (6.5), we may
replace the inequality in the last line of (6.8) with

R
Rd

ˇ̌
'.x/ � v.�˛

�

I t; x/
ˇ̌
�.dx/ � ".

Similarly, given T0 and  2 CLip.Rd /, we may define the functions J.T0;  I t; �; ˛I x; Q̨ /,
J.T0;  I�

˛I s; x; Q̨ /, v.T0;  I�˛I s; x/, as well as the sets M"
cont .T0;  I t; �/, V "

cont .T0;  I t; �/,
Vcont .T0;  I t; �/ in the obvious sense. In particular, we have the following tower property:

J.t; �; ˛I x; Q̨ / D J.T0;  I t; �; ˛I x; Q̨ /; where  .x/ WD J.T0; �
˛
T0
; ˛I x; Q̨ /I

v.�˛I t; x/ D v.T0; Q I�
˛
I t; x/; where Q .x/ WD v.�˛IT0; x/:

(6.9)

We now establish the DPP for Vcont .t; �/.

Theorem 6.5 Let Assumption 6.1 hold. For any 0 � t � T0 � T and � 2 P2, it holds

Vcont .t; �/ D QVcont .t; �/ WD
\
">0

QV "
cont .t; �/; where

QV "
cont .t; �/ WD

n
' 2 CLip.R

d / W

Z
Rd
j'.x/ � J.T0;  I t; �; ˛

�
I x; ˛�/j�.dx/ � ";

for some . ; ˛�/ satisfying:  2 V "
cont .T0; �

˛�

T0
/; ˛� 2M"

cont .T0;  I t; �/
o
:

(6.10)

Proof (i) We first prove Vcont .t; �/ � QVcont .t; �/. Fix ' 2 Vcont .t; �/, " > 0, and set "1 WD "
2

.
Since ' 2 V

"1
cont .t; �/, there exists ˛� 2M

"1
cont .t; �/ satisfying (6.8) for "1. Denote

 .x/ WD J.T0; �
˛�

T0
; ˛�I x; ˛�/; Q .x/ WD v.�˛

�

IT0; x/:

By (6.9) we have J.T0;  I t; �; ˛�I x; ˛�/ D J.t; �; ˛�I x; ˛�/ and thusZ
Rd

ˇ̌
'.x/ � J.T0;  I t; �; ˛

�
I x; ˛�/

ˇ̌
�.dx/ � "1 � ":

We shall show that  2 V "
cont .T0; �

˛�

T0
/ and ˛� 2M"

cont .T0;  I t; �/. Then ' 2 QV "
cont .t; �/, and

therefore, since " > 0 is arbitrary, we have ' 2 QV .t; �/.
Step 1. In this step we show thatZ

Rd

�
J.T0; �

˛�

T0
; ˛�I x; ˛�/�v.�˛

�

IT0; x/
�
�˛
�

T0
.dx/ D

Z
Rd
Œ .x/� Q .x/��˛

�

T0
.dx/ � "1: (6.11)

Then ˛� 2 M"
cont .T0; �

˛�

T0
/, which, together with the regularity of  from Lemma 6.4, implies

immediately that  2 V "
cont .T0; �

˛�

T0
/.
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To see this, we recall (6.2) with � 2 L2.t; �/. Since ˛� 2M
"1
cont .t; �/, by (6.9) we have

"1 � E
h
J.t; �; ˛�I �; ˛�/ � v.�˛

�

I t; �/
i
D E

h
J.T0;  I t; �; ˛

�
I �; ˛�/ � v.T0; Q I�

˛�
I t; �/

i
� E

h
J.T0;  I t; �; ˛

�
I �; ˛�/ � J.T0; Q I t; �; ˛

�
I �; ˛�/

i
D E

h
 .X

t;�;˛�

T0
/ � Q .X

t;�;˛�

T0
/
i
:

Note that L
X
t;�;˛�

T0

D �˛
�

T0
, then this is exactly (6.11).

Step 2. It remains to show that ˛� 2M"
cont .T0;  I t; �/. By the definition of v and its regularity

from Lemma 6.4, there exists Q̨� 2 Acont such that

J.T0;  I t; �; ˛
�
I x; Q̨�/ � v.T0;  I�

˛�
I t; x/C "1; 8x 2 Rd :

Then, denoting Ǫ� WD Q̨� ˚T0 ˛
� 2 Acont , by (6.9) again we have

E
h
J.T0;  I t; �; ˛

�
I �; ˛�/ � v.T0;  I�

˛�
I t; �/

i
� E

h
J.T0;  I t; �; ˛

�
I �; ˛�/ � J.T0;  I t; �; ˛

�
I �; Q̨�/

i
C "1

D E
h
J.t; �; ˛�I �; ˛�/ � J.t; �; ˛�I �; Ǫ�/

i
C "1

� E
h
J.t; �; ˛�I �; ˛�/ � v.�˛

�

I t; �/
i
C "1 � "1 C "1 D ";

This means ˛� 2M"
cont .T0;  I t; �/.

(ii) We next prove QVcont .t; �/ � Vcont .t; �/. Fix ' 2 QVcont .t; �/, " > 0, and set "1 WD "
4

.
Since ' 2 QV "1

cont .t; �/, there exist . ; ˛�/ satisfying the desired properties in (6.10) for "1. In
particular, since  2 V

"1
cont .T0; �

˛�

T0
/, there exists desired Q̨� 2 M

"1
cont .T0; �

˛�

T0
/ required in (6.8)

for "1. Denote Ǫ� WD ˛� ˚T0 Q̨
� 2 Acont and

O .x/ WD J.T0; �
˛�

T0
; Q̨�I x; Q̨�/; Q .x/ WD v.� Ǫ

�

IT0; x/:

By (6.10),

E
hˇ̌
J.T0;  I t; �; ˛

�
I �; ˛�/ � J.T0; O I t; �; ˛

�
I �; ˛�/

ˇ̌i
(6.12)

D E
hˇ̌
 .X

�˛
�
It;�;˛�

T0
/ � O .X

�˛
�
It;�;˛�

T0
/
ˇ̌i
D

Z
Rd

ˇ̌
 .x/ � J.T0; �

˛�

T0
; Q̨�I x; Q̨�/

ˇ̌
�˛
�

T0
.dx/ � "1

Then, since ' 2 QV "1
cont .t; �/ with corresponding . ; ˛�/, by (6.9) and (6.12) we have

E
hˇ̌
'.�/ � J.t; �; Ǫ�I �; Ǫ�/

ˇ̌i
� E

hˇ̌
'.�/ � J.T0;  I t; �; ˛

�
I �; ˛�/

ˇ̌i
C "1 � 2"1 � ";

where � 2 L2.t; �/. We claim further that Ǫ� 2 M"
cont .t; �/. Then ' 2 V "

cont .t; �/, and thus
' 2 Vcont .t; �/, since " > 0 is arbitrary.
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To see the claim, since ˛� 2M
"1
cont .T0;  I t; �/, Q̨

� 2M
"1
cont .T0; �

˛�

T0
/, by (6.9) we have

E
h
J.t; �; Ǫ�I �; Ǫ�/ � v.� Ǫ

�

I t; �/
i

D E
h
J.T0; O I t; �; ˛

�
I �; ˛�/ � v.T0; Q I�

˛�
I t; �/

i
� E

h
J.T0;  I t; �; ˛

�
I �; ˛�/ � v.T0; Q I�

˛�
I t; �/

i
C "1

� E
h
v.T0;  I�

˛�
I t; �/ � v.T0; Q I�

˛�
I t; �/

i
C 2"1

� sup
Q̨2Acont

E
h
J.T0;  I t; �; ˛

�
I �; Q̨ / � J.T0; Q I t; �; ˛

�
I �; Q̨ /

i
C 2"1

D E
�
 .X

t;�;˛�

T0
/ � Q .X

t;�;˛�

T0
/
�
C 2"1 � E

�
O .X

t;�;˛�

T0
/ � Q .X

t;�;˛�

T0
/
�
C 3"1 � "1 C 3"1 D ":

This means Ǫ� 2M"
cont .t; �/, and hence completes the proof.

Remark 6.6 (i) Our set value Vcont .t; �/ is defined for each .t; �/ with elements in CLip.Rd /,
instead of V .t; x; �/ � R for each .t; x; �/. This is consistent with (2.7) in the discrete model, and
is due to the fact that an "-MFE ˛� in Definition 6.2 depends on .t; �/, but is common for all initial
states x. Indeed, if we define Vcont .t; x; �/ in an obvious manner, it will not satisfy the DPP.

(ii) The above observation is also consistent with the fact that the following master equation is
local in .t; �/, but non-local in x due to the term @xV.t; Qx; �/:

@tV.t; x; �/C
1

2
tr .@xxV /CH.x;�; @xV /

C

Z
Rd

�1
2

tr .@ Qx�V.t; x; �; Qx//C @pH. Qx; �; @xV.t; Qx; �//@�V.t; x; �; Qx/
�
�.d Qx/ D 0:

(6.13)

Under appropriate conditions, in particular under certain monotonicity conditions, the above mas-
ter equation has a unique solution and we have Vcont .t; �/ D fV.t; �/g is a singleton, where
V.t; �/.x/ WD V.t; x; �/ is a function of x. In this way, we may also view (6.13) as a first order
ODE on the space C 2.Rd / (the regularity in x is a lot easier to obtain):

@tV.t; �/CH .�;V.t; �//CM.�;V.t; �/; @�V.t; �// D 0;

where H .�; v.�//.x/ WD
1

2
tr .@xxv.x//CH.x;�; @xv.x//;

M.�; v.�/; Qv.�; �//.x/ WD

Z
Rd

�1
2

tr .@ Qx Qv.x; Qx//C @pH. Qx; �; @xv. Qx// Qv.x; Qx/
�
�.d Qx/:

(6.14)

It could be interesting to explore master equations from this perspective as well.

6.2 Convergence of the N -player game

By enlarging the filtered probability space .�;F ;F ;P /, if necessary, we let B1; � � � ; BN be inde-
pendent d -dimensional Brownian motions on it. Set A1cont WD [L�0A

L
cont , where, for eachL � 0,

AL
cont denotes the set of admissible controls ˛ W Œ0; T � �Rd �P2 ! A such that

j˛.t; x; �/ � ˛.t; Qx; Q�/j � L˛jx � Qxj C LW1.�; Q�/:

Here the Lipschitz constant L˛ may depend on ˛, hence the Lipschitz continuity in x is not uniform
in ˛. We emphasize that the Lipschitz continuity in � is under W1, rather than W2, so that we can
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use the representation (6.1). Note that Acont D A0
cont , and by Remark 3.1 (i), all the results in the

previous subsection remain true if we replace Acont with A1cont .
Given t 2 Œ0; T �, Ex D .x1; � � � ; xN / 2 RdN and Ę D .˛1; � � � ; ˛N / 2 .AL

cont /
N , consider

X t;Ex; ĘIis D xi C

Z s

t

b
�
r; X t;Ex; ĘIir ; �t;Ex; Ęr ; ˛i .r; X

t;Ex; ĘIi
r ; �t;Ex; Ęr /

�
dr C B is � B

i
t ; i D 1; � � � ; N I

where �t;Ex; Ęs WD
1

N

NX
iD1

ı
X
t;Ex; ĘIi
s

I

Ji .t; Ex; Ę/ WD E
h
g.X

t;Ex; ĘIi
T ; �

t;Ex; Ę
T /C

Z T

t

f
�
s; X t;Ex; ĘIis ; �t;Ex; Ęs ; ˛i .s; X

t;Ex; ĘIi
s ; �t;Ex; Ęs /

�
ds
i
;

v
N;L
i .t; Ex; Ę/ WD inf

Q̨2ALcont

Ji .t; Ex; . Ę
�i ; Q̨ //:

(6.15)

In light of Lemma 6.4, the following regularity result is interesting in its own right. However,
since it will not be used for our main result, we postpone its proof to Appendix.

Proposition 6.7 Let Assumption 6.1 hold. For any L � 0, there exists a constant CL > 0, de-
pending only on T; d; C0; L0, and L, such that, for any .t; Ex/ 2 Œ0; T � � RdN , Nx; Qx 2 Rd , and
Ę 2 .AL

cont /
N , we haveˇ̌

v
N;L
i

�
t; .Ex�i ; Nx/; Ę

�
� v

N;L
i

�
t; .Ex�i ; Qx/; Ę

�ˇ̌
� CLj Nx � Qxj; i D 1; � � � ; N: (6.16)

Given ˛ 2 AL
cont , by viewing it as the homogeneous control .˛; � � � ; ˛/, we may use the sim-

plified notations X t;Ex;˛Ii , �t;Ex;˛, Ji .t; Ex; ˛/, and vN;Li .t; Ex; ˛/ in the obvious sense.

Definition 6.8 (i) For .t; Ex/ 2 Œ0; T � � RdN, " > 0, L � 0, we call ˛� 2 AL
cont a homogeneous

."; L/-equilibrium of the N -player game at .t; Ex/, denoted as ˛�2M
N;";L
cont .t; Ex/, if

1

N

NX
iD1

�
Ji .t; Ex; ˛

�/ � v
N;L
i .t; Ex; ˛�/

�
� ": (6.17)

(ii) The set value for the N -player game is defined as:

VN
cont .t; Ex/ WD

\
">0

V
N;"
cont .t; Ex/ WD

\
">0

[
L�0

V
N;";L
cont .t; Ex/; where (6.18)

V
N;";L
cont .t; Ex/ WD

n
' 2 CLip.R

d / W 9˛� 2M
N;";L
cont .t; Ex/ s.t.

1

N

NX
iD1

j'.xi / � Ji .t; Ex; ˛
�/j � "

o
:

We remark that, although V
N;";L
cont .t; Ex/ involves only the values f'.xi /g1�i�N , for the conve-

nience of the convergence analysis we consider its elements as ' 2 CLip.Rd /.

Remark 6.9 (i) Recall (3.1). By the required symmetry, obviously there exist functions JN ; vN;L W
Œ0; T � �P2 �AL

cont �Rd ! R such that

Ji .t; Ex; ˛/ D J
N .t; �N

Ex
; ˛I xi /; v

N;L
i .t; Ex; ˛/ D vN;L.t; �N

Ex
; ˛I xi /; i D 1; � � � ; N: (6.19)

Moreover, VN
cont .t; Ex/ is invariant in �N

Ex
and thus can be denoted as VN

cont .t; �
N
Ex
/.

(ii) The required inequalities in Definition 6.8 are equivalent to:Z
Rd
ŒJN � vN;L�.t; �N

Ex
; ˛�I x/�N

Ex
.dx/ � ";

Z
Rd

�
'.x/ � JN .t; �N

Ex
; ˛�I x/

�
�N
Ex
.dx/ � ":

36



We now turn to the convergence, starting with the convergence of the equilibrium measures.
Recall the vector .˛; Q̨ /i introduced in (3.6).

Theorem 6.10 Let Assumption 6.1 hold. For any L � 0, there exists a constant CL > 0, depending
only on T; d; C0; L0, and L, such that, for any t 2 Œ0; T �, Ex 2 RdN , � 2 P2, ˛; Q̨ 2 AL

cont , and
i D 1; � � � ; N ,

sup
t�s�T

E
h
W1.�

t;Ex;.˛; Q̨/i
s ; �˛s /

i
� CL�N ; (6.20)

where �N WD W1.�
N
Ex
; �/CN�

1
d_3 kExk2 CN

�1; kExk22 WD
1

N

NX
iD1

jxi j
2:

Proof Recall (6.15) and introduce, for j D 1; � � � ; N ,

QXjs D xj C

Z s

t

b.r; QXjr ; �
˛
r ; ˛.r;

QXjr ; �
˛
r //dr C B

j
s � B

j
t ; Q�

N
s WD

1

N

NX
jD1

ı QXjs
I

QXs D Q� C

Z s

t

b.r; QXr ; �
˛
r ; ˛.r;

QXr ; �
˛
r //dr C Bs � Bt ; where Q� 2 L2.F0I�

N
Ex
/:

(6.21)

Note that QX1; � � � ; QXN are independent. We proceed the rest of the proof in two steps.
Step 1. In this step we estimate E

�
W1. Q�

N
s ; �

˛
s /
�
. First, by [38, Lemma 8.4] we have

E
�
W1. Q�

N
s ;L QXs

/
�
� CN�

1
d_3 kExk2:

Next, fix an ' in (6.1) and let u D u' denote the solution to the following PDE on Œt; s�:

@ruC
1

2
tr
�
@xxu

�
C b.r; x; �˛s ; ˛.r; x; �

˛
r // � @xu D 0; u.s; x/ D '.x/: (6.22)

Applying Lemma 6.4 with Q̨ .r; x/ WD ˛.r; x; �˛r / and f D 0, we see that u is uniformly Lipschitz
continuous in x, with a Lipschitz constant C independent of ' and L. Thus,

E
�
'. QXs/ � '.X

˛
s /
�
D E

�
u.t; Q�/ � u.t; �/

�
� CEŒj Q� � �j�:

Since F0 is atomless, we may choose �; Q� such that EŒj Q� � �j� D W1.�
N
Ex
; �/, then (6.1) implies

W1.L QXs
; �˛s / � CW1.�

N
Ex
; �/: Put together, we have

E
�
W1. Q�

N
s ; �

˛
s /
�
� CW1.�

N
Ex
; �/C CN�

1
d_3 kExk2 � C�N ; t � s � T: (6.23)

Step 2. We next estimate E
�
W1.�

t;Ex;.˛; Q̨/i
s ; �˛s /

�
. Denote ˛i WD Q̨ , j̨ WD ˛ for j ¤ i , and

ˇ
j
s WD b.s; QX

j
s ; Q�

N
s ; j̨ .s; QX

j
s ; Q�

N
s // � b.s;

QX
j
s ; �

˛
s ; ˛.s;

QX
j
s ; �

˛
s //; 1 � j � N

Ms WD
QN
jD1M

j
s ; M

j
s WD exp

� R s
t ˇ

j
r dB

j
r �

1
2

R s
t jˇ

j
r j
2dr

�
:

Then, by the Girsanov theorem we have

E
�
W1.�

t;Ex;.˛; Q̨/i
s ; �˛s /

�
D E

�
MsW1. Q�

N
s ; �

˛
s /
�
D E

�
ŒMs � 1�W1. Q�

N
s ; �

˛
s /
�
C E

�
W1. Q�

N
s ; �

˛
s /
�

D

NX
jD1

E
h Z s

t

Mrˇ
j
r dB

j
r W1. Q�

N
s ; �

˛
s /
i
C E

�
W1. Q�

N
s ; �

˛
s /
�
: (6.24)
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By the martingale representation theorem, we have

W1. Q�
N
s ; �

˛
s / D E

�
W1. Q�

N
s ; �

˛
s /
�
C

NX
jD1

Z s

t

Zjr dB
j
r : (6.25)

Note that QXj are independent. Consider the following linear PDE on Œt; s� �RdN :

@ru.r; Ex
0/C

1

2

NX
jD1

tr
�
@xjxju.r; Ex

0/
�
C

NX
jD1

b.r; x0j ; �
˛
s ; ˛.r; x

0
j ; �

˛
r // � @xju.r; Ex

0/ D 0;

u.s; Ex0/ D W1.�
N
Ex0
; �˛s /:

(6.26)

By standard BSDE theory, see e.g. [43, Chapter 5], we have Zjr D @xju.r; EX
t;Ex
r /, where X t;Ex;jr WD

xj CB
j
r �B

j
t . Note that the terminal condition u.s; Ex0/ is Lipschitz continuous in x0j with Lipschitz

constant 1
N

. Then, similarly to (6.22), by Lemma 6.4 we see that jZj j � j@xjuj �
C
N

for some
constant C independent of ˛ and L. Thus, by (6.24) and (6.25),

E
h
W1.�

t;Ex;.˛; Q̨/i
s ; �˛s / �W1. Q�

N
s ; �

˛
s /
i
D

NX
jD1

E
h Z s

t

Mrˇ
j
r �Z

j
r dr

i
�
C

N

NX
jD1

E
h Z s

t

Mr jˇ
j
r jdr

i
:

Note that jˇi j � C and, for j ¤ i , jˇjr j � CLW1. Q�Nr ; �
˛
r /. Then, by (6.23),

E
h
W1.�

t;Ex;.˛; Q̨/i
s ; �˛s /

i
� E

�
W1. Q�

N
s ; �

˛
s /
�
C
C

N
E
h Z s

t

Mr jˇ
i
r jdr C

X
j¤i

Z s

t

Mr jˇ
j
r jdr

i
� E

�
W1. Q�

N
s ; �

˛
s /
�
C
C

N
C
CL

N

X
j¤i

E
h Z s

t

MrW1. Q�
N
r ; �

˛
r /dr

i
D
C

N
C CL�N � CL�N :

Theorem 6.11 For the setting in Theorem 6.10, we haveˇ̌̌
Ji .t; Ex; .˛; Q̨ /i / � J.t; �; ˛I xi ; Q̨ /

ˇ̌̌
C

ˇ̌̌
v
N;L
i .t; Ex; ˛/ � v.�˛I t; xi /

ˇ̌̌
� CL�

1
4

N : (6.27)

Proof Fix i . First, by taking supremum over Q̨ 2 AL
cont , the uniform estimate for J implies that

for v immediately. So it suffices to prove the former estimate.
For this purpose, recall (6.15) and denote

QJi .t; Ex; .˛; Q̨ /i / WD EP
h
g.X

t;Ex;.˛; Q̨/i Ii
T ; �˛T /C

Z T

t

f .s; X t;Ex;.˛; Q̨/i Iis ; �˛s ; Q̨ .s; X
t;Ex;.˛; Q̨/i Ii
s ; �˛s //ds

i
:

Then one can easily see that, by applying Theorem 6.10,ˇ̌
Ji .t; Ex; .˛; Q̨ /i / � QJi .t; Ex; .˛; Q̨ /i /

ˇ̌
� CL sup

t�s�T

E
�
W1.�

t;Ex;.˛; Q̨/i
s ; �˛s /

�
� CL�N : (6.28)

Next, denote

X is WD xi C B
i
s � B

i
t ; Q�

N;i
s WD

1
N

hP
j¤i ıX

t;Ex;.˛; Q̨ /i Ij
s

C ıX is

i
I

ˇs WD b.s; X
i
s ; �

˛
s ; Q̨ .s; X

i
s ; �

˛
s //; Ms WD exp

� R s
t ˇrdB

i
r �

1
2

R s
t jˇr j

2dr
�
I

Q̌
s WD b.s; X

i
s ; Q�

N;i
s ; Q̨ .s; X is ; Q�

N;i
s //; QMs WD exp

� R s
t
Q̌
rdB

i
r �

1
2

R s
t j
Q̌
r j
2dr

�
:
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By (6.3) and (6.15), it follows from the Girsanov theorem again thatˇ̌̌
QJi .t; Ex; .˛; Q̨ /i / � J.t; �; ˛I xi ; Q̨ /

ˇ̌̌
D

ˇ̌̌
E
h�
QMT �MT

��
g.X iT ; �

˛
T /C

Z T

t

f .s; X is ; �
˛
s ; Q̨ .s; X

i
s ; �

˛
s /ds

�iˇ̌̌
� CE

�
j QMT �MT j

�
:

(6.29)
Denote �Ms WD QMs �Ms , �ˇs WD Q̌s � ˇs . Then, since b is bounded,

EŒj�Msj
2� D E

h� Z s

t

Œ QMr
Q̌
r �Mrˇr �dB

i
r

�2i
D E

h Z s

t

Œ QMr
Q̌
r �Mrˇr �

2dr
i

� C

Z s

t

EŒj�Mr j
2�dr C CE

h Z s

t

j QMr j
2
j�ˇr j

2dr
i

� C

Z s

t

EŒj�Mr j
2�dr C CE

h Z s

t

QM
3
2
r
QM
1
2
r j�ˇr j

1
2dr

i
� C

Z s

t

EŒj�Mr j
2�dr C C

�
E
h Z s

t

QMr j�ˇr jdr
i� 1

2

� C

Z s

t

EŒj�Mr j
2�dr C CL

�
E
h Z s

t

QMrW1. Q�
N;i
r ; �˛r /dr

i� 1
2

D C

Z s

t

EŒj�Mr j
2�dr C CL

�
E
h Z s

t

W1.�
t;Ex;.˛; Q̨/i
r ; �˛r /dr

i� 1
2

� C

Z s

t

EŒj�Mr j
2�dr C CL�

1
2

N ;

where the last inequality thanks to Theorem 6.10. Then, by the Grownwall inequality we obtain

EŒj�Msj
2� � CL�

1
2

N ; and thus (6.29) impliesˇ̌̌
QJi .t; Ex; .˛; Q̨ /i / � J.t; �; ˛I xi ; Q̨ /

ˇ̌̌
� CL�

1
4

N :

This, together with (6.28), implies the estimate for J in (6.27) immediately.

Theorem 6.12 Let Assumption 6.1 hold. Assume further that lim
N!1

W1.�
N
Ex
; �/ D 0, and there

exists a constant C > 0 such that6 kExk2 � C for all N . Then\
">0

[
L�0

lim
N!1

V
N;";L
cont .t; �

N
Ex
/ � Vcont .t; �/ �

\
">0

lim
N!1

V
N;";0
cont .t; �

N
Ex
/ (6.30)

In particular, since lim
N!1

V
N;";0
cont .t; �

N
Ex
/ �

[
L�0

lim
N!1

V
N;";L
cont .t; �

N
Ex
/, actually equalities hold.

Proof (i) We first prove the right inclusion in (6.30). Fix ' 2 Vcont .t; �/, " > 0, and set "1 WD "
2

.
By (6.8) and (6.5), there exists ˛� 2M

"1
cont .t; �/ such thatZ

Rd

�
J.t; �; ˛�I x; ˛�/ � v.�˛

�

I t; x/
�
�.dx/ � "1;

Z
Rd

ˇ̌
'.x/ � J.t; �; ˛�I x; ˛�/

ˇ̌
�.dx/ � "1:

6Note again that Ex depends on N . Also, the conditions here are slightly weaker than lim
N!1

W2.�
N
Ex
; �/ D 0.
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Recall Lemma 6.4 and note that ' 2 CLip.Rd /, then by (6.1) we haveZ
Rd

�
J.t; �; ˛�I x; ˛�/ � v.�˛

�

I t; x/
�
�N
Ex
.dx/ � "1 C CW1.�

N
Ex
; �/;Z

Rd

ˇ̌
'.x/ � J.t; �; ˛�I x; ˛�/

ˇ̌
�N
Ex
.dx/ � "1 C C'W1.�

N
Ex
; �/;

where C' may depend on the Lipschitz constant of '. Moreover, by (6.27) we have

1

N

NX
iD1

�
Ji .t; Ex; ˛

�/ � v
N;L
i .t; Ex; ˛�/

�
�
1

N

NX
iD1

�
J.t; �; ˛�I xi ; ˛

�/ � v.�˛
�

I t; xi /
�
C CL�

1
4

N

D

Z
Rd

�
J.t; �; ˛�I x; ˛�/ � v.�˛

�

I t; x/
�
�N
Ex
.dx/C CL�

1
4

N � "1 C CL�
1
4

N I

1

N

NX
iD1

j'.xi / � Ji .t; Ex; ˛
�/j �

1

N

NX
iD1

j'.xi / � J.t; �; ˛
�
I xi ; ˛

�/j C CL�
1
4

N

D

Z
Rd

ˇ̌
'.x/ � J.t; �; ˛�I x; ˛�/

ˇ̌
�N
Ex
.dx/C CL�

1
4

N � "1 C CL;'�
1
4

N :

We emphasize again that kExk2 � C is independent of N . Then, by choosing N large enough such

that CL�
1
4

N � "1, CL;'�
1
4

N � "1, we obtain

1

N

NX
iD1

�
Ji .t; Ex; ˛

�/ � v
N;L
i .t; Ex; ˛�/

�
� "I

1

N

NX
iD1

j'.xi / � Ji .t; Ex; ˛
�/j � ":

This implies that ˛� 2 M
N;";0
cont .t; Ex/ and ' 2 V

N;";0
cont .t; �

N
Ex
/, for all N large enough. That is,

' 2 limN!1 V
N;";0
cont .t; Ex/ for any " > 0.

(ii) We next show the left inclusion in (6.30). Fix ' 2
\
">0

[
L�0

lim
N!1

V
N;";L
cont .t; �

N
Ex
/, " > 0, and

set "1 WD "
2

. There exist L" � 0 and an infinite sequence fNkgk�1 such that ' 2 V
Nk ;"1;L"
cont .t; �N

Ex
/

for all k � 1. Recall (6.17) and (6.18), there exists ˛k 2 A
L"
cont such that

1

Nk

NkX
iD1

�
Ji .t; Ex; ˛

k/ � v
Nk ;L"
i .t; Ex; ˛k/

�
� "1I

1

Nk

NkX
iD1

j'.xi / � Ji .t; Ex; ˛
k/j � "1:

Note that L" is fixed, in particular it is independent of k. In light of Remark 3.1 (i) and denote
Q̨k.s; x/ WD ˛k.s; x; �˛

k

/, then � Q̨
k

D �˛
k

. Similarly to (i), by (6.27) we haveZ
Rd

�
J.t; �; Q̨kI x; Q̨k/ � v.�˛

k

I t; x/
�
�
Nk
Ex
.dx/ � "1 C CL"�

1
4

Nk
;Z

Rd

ˇ̌
'.x/ � J.t; �; Q̨kI x; Q̨k/

ˇ̌
�N
Ex
.dx/ � "1 C CL"�

1
4

Nk
:

Then, by Lemma 6.4 and (6.1) we haveZ
Rd

�
J.t; �; Q̨kI x; Q̨k/ � v.�˛

k

I t; x/
�
�.dx/ � "1 C CL"�

1
4

Nk
C CW1.�

Nk
Ex
; �/;Z

Rd

ˇ̌
'.x/ � J.t; �; Q̨kI x; Q̨k/

ˇ̌
�.dx/ � "1 C CL"�

1
4

Nk
C C'W1.�

Nk
Ex
; �/:
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Now choose k large enough (possibly depending on " and ') such that

CL"�
1
4

Nk
C CW1.�

Nk
Ex
; �/ � "1; CL"�

1
4

Nk
C C'W1.�

Nk
Ex
; �/ � "1:

Then we haveZ
Rd

�
J.t; �; Q̨kI x; Q̨k/ � v.�˛

k

I t; x/
�
�.dx/ � ";

Z
Rd

ˇ̌
'.x/ � J.t; �; Q̨kI x; Q̨k/

ˇ̌
�.dx/ � ":

This implies that Q̨k 2 M"
cont .t; �/ and ' 2 V "

cont .t; �/. Since " > 0 is arbitrary, we obtain
' 2 Vcont .t; �/.

7 Appendix

7.1 Some examples

In this subsection we first construct an example in discrete setting such that V0 � Vstate � Vpath �

Vrelax with all the inclusions strict, where Vpath are defined in an obvious way. In particular, V0
is empty.

Example 7.1 Set T D 2, S D fx; xg, A D .1
3
; 2
3
/, and

q.0; x; �; aI x/ D q.0; x; �; aI x/ �
1

2
; q.1; x; �; aI x/ D a; q.1; x; �; aI x/ D 1 � aI

F.0; x; �; a/ D 0; F.1; x; �; a/ D F1.a/ WD aŒ1 � a�; G.x; �/ D �.x/:

Then for any � 2 P0.S/, we have V D f.y; y/ W y 2 OV g for V D V0;Vstate;Vpath;Vrelax , and

OV0.0; �/ D ;; OVstate.0; �/ D
n5
9
;
13

18
;
8

9

o
;

OVpath.0; �/ WD

�
��.x/C ��.x/C

2

9
W �; � 2

n1
3
;
1

2
;
2

3

o�
;

OVrelax.0; �/ WD

�
��.x/C ��.x/C

2

9
W �; � 2

h1
3
;
2

3

i� (7.1)

Proof Since jSj D 2, for any � 2 P0.S/ clearly it suffices to specify �.x/.
(i) We first compute V0.0; �/. For any ˛; Q̨ 2 Astate, it is straightforward to compute:

�˛1.x/ D
X
x02S

�.x0/q.0; x0; �; ˛.0; x0/I x/ D
X
x02S

�.x0/
1

2
D
1

2
I

�˛2.x/ D
X
x12S

�˛1.x1/q.1; x1; �
˛
1 ; ˛.1; x1/I x/ D

1

2

X
x12S

˛.1; x1/I

P�
˛I0;x0; Q̨ .X1 D x/ D q.0; x0; �; Q̨ .0; x0/I x/ D

1

2
:

(7.2)
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Then

J.0; �; ˛I x0; Q̨ / D EP�
˛ I0;x0; Q̨

h
G.X2; �

˛
2/C

X
tD0;1

F.t; Xt ; �
˛
t ; Q̨ .t; Xt //

i
D �˛2.x/C EP�

˛ I0;x0; Q̨
h
F1. Q̨ .1; X1//

i
D

1

2

X
x12S

˛.1; x1/C
1

2

X
x12S

F1. Q̨ .1; x1//: (7.3)

Given ˛, we see that inf Q̨ J.0; �; ˛I x0; Q̨ / D 1
2

P
x12S ˛.1; x1/C

2
9

, and the minimum is achieved
when Q̨ .1; x1/ D 1

3
; 2
3

, 8x1 2 S, which are not included in A. Thus Mstate.0; �/ D ;, and hence
V0.0; �/ D ;.

(ii) We next compute Vstate.0; �/. Fix " > 0 small. By (2.13) and (7.3) it is clear that

˛" 2M"
state.0; �/ if and only if

1

2

X
x12S

F1.˛
".1; x1// �

2

9
C ": (7.4)

and in this case, for any x0 2 S, by (7.3) again we have

J.0; �; ˛"I x0; ˛
"/ D J0.˛

"/ WD
1

2

X
x12S

QF1.˛
".1; x1//; where QF1.a/ WD aC F1.a/ D aŒ2 � a�:

In particular, this implies that V "
state.0; �/ D

n
.y; y/ W y 2 OV "

state.0; �/
o

where

OV "
state.0; �/ WD

n
J0.˛

"/ W ˛" 2M"
state.0; �/

o
:

Recall again that inf
a2A

F1.a/ D
2

9
. By (7.4), ˛" 2 M"

state.0; �/ if and only if there exists a

function �" W S! R such that F1.˛".1; x1// D 2
9
C �".x1/ for all x1 2 S, and

�".x/; �".x/ > 0; �".x/C �".x/ � 2": (7.5)

This implies that

˛".1; x1/ D
1

3
C O�".x1/ or

2

3
� O�".x1/; where O�".x1/ WD

6�".x1/

1C
p
1 � 36�".x1/

:

Note that QF1 is strictly increasing for a 2 A. Then, by (2.14) we have, for " > 0 small,

OV "
state.0; �/ D

[
�"

4[
iD1

.yi � "; yi C "/;

y1 WD
1

2

h
QF1
�1
3
C �".x/

�
C QF1

�1
3
C �".x/

�i
; y2 WD

1

2

h
QF1
�1
3
C �".x/

�
C QF1

�2
3
� �".x/

�i
;

y3 WD
1

2

h
QF1
�2
3
� �".x/

�
C QF1

�1
3
C �".x/

�i
; y4 WD

1

2

h
QF1
�2
3
� �".x/

�
C QF1

�2
3
� �".x/

�i
;
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where the first union is over all �" satisfying (7.5). Note that 0 < �".x/; �".x/ < 2". Then by
(2.14) it is obvious that Vstate.0; �/ D

n
.y; y/ W y 2 OVstate.0; �/

o
and

OVstate.0; �/ D
n
QF1
�1
3

�
;
1

2

�
QF1
�1
3

�
C QF1

�2
3

��
; QF1

�2
3

�o
D

n5
9
;
13

18
;
8

9

o
:

(iii) We now compute Vpath.0; �/. For any ˛; Q̨ 2 Apath, we still have �˛1.x/ D
1
2

and
P�

˛I0;x0; Q̨ .X1 D x/ D
1
2

, for all x0 2 S. Moreover,

�˛2.x/ D
X

x0;x12S

�.x0/q.0; x0; �; ˛.0; x0/I x1/q.1; x1; �
˛
1 ; ˛.1; x0; x1/I x/

D
1

2

X
x0;x12S

�.x0/˛.1; x0; x1/I

J.0; �; ˛I x0; Q̨ / D EP�
˛ I0;x0; Q̨

h
G.X2; �

˛
2/C F.1;X1; �

˛
1 ; Q̨ .1; X0; X1//

i
D �˛2.x/C EP�

˛ I0;x0; Q̨
h
F1. Q̨ .1; X0; X1//

i
D

X
Qx02S

�. Qx0/ �
1

2

X
x12S

˛.1; Qx0; x1/C
1

2

X
x12S

F1. Q̨ .1; x0; x1//: (7.6)

Similarly to (7.4),

˛" 2M"
path.0; �/ if and only if

1

2

X
x12S

F1.˛
".1; x0; x1// �

2

9
C "; 8x0 2 S:

Furthermore, by abusing the notation �", the above is equivalent to that there exists �" W S�S! A

such that, by denoting O�".x0; x1/ WD
6�".x0;x1/

1C
p
1�36�".x0;x1/

,

�".x0; x1/ > 0; 8x0; x1 2 S; and �".x0; x/C �".x0; x/ � 2"; 8x0 2 SI

˛".1; x0; x1/ D
1

3
C O�".x0; x1/ or

2

3
� O�".x0; x1/:

Following the same arguments as in (ii), we can easily see that Vpath.0; �/ consists of pairs�
J.0; �; ˛�I x; ˛�/; J.0; �; ˛�I x; ˛�/

�
for all ˛� W S2 ! f1

3
; 2
3
g. Note that F1.13/ D F1.

2
3
/ D 2

9
,

and 1
2

P
x12S ˛

�.1; Qx0; x1/ takes 3 possible values: 1
3
; 1
2
; 2
3

. Then by (7.6) we have

J.0; �; ˛�I x0; ˛
�/ D ��.x/C ��.x/C

2

9
; where �; � 2

˚1
3
;
1

2
;
2

3

	
: (7.7)

Again this is independent of x0. Then Vpath.0; �/ D
n
.y; y/ W y 2 OVpath.0; �/

o
and

OVpath.0; �/ WD
n
��.x/C ��.x/C

2

9
W �; � 2

˚1
3
;
1

2
;
2

3

	o
:

In particular, we see that OVstate.0; �/ consists of the elements of OVpath.0; �/ with � D �, and
OVpath.0; �/ D OVstate.0; �/ when �.x/ D �.x/.
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(iv) Finally we compute Vrelax.0; �/. Fix 
; Q
 2 Arelax , it is straightforward to compute:

�


1.x/ D

X
x02S

�.x0/

Z
A
q.0; x0; �; aI x/
.0; x0I da/ D

X
x02S

�.x0/ �
1

2
D
1

2
I

P�

 I0;x0; Q
 .X1 D x/ D

Z
A
q.0; x0; �; aI x/ Q
.0; x0I da/ D

1

2
I

�


2.x/ D

X
x0;x12S

�.x0/

Z
A2
q.0; x0; �; a0I x1/q.1; x1; �



1 ; a1I x/
.0; x0I da0/
.1; x0; x1I da1/

D
1

2

X
x0;x12S

�.x0/

Z
A
a
.1; x0; x1I da/I

J.0; �; 
 I x0; Q
/ D EP�

 I0;x0; Q


h
G.X2; �



2/C

X
tD0;1

Z
A
F.t; Xt ; �



t ; a/ Q
.t; X I da/

i
D �



2.x/C EP�


 I0;x0; Q

h Z

A
F1.a/ Q
.1;X I da/

i
D
1

2

X
Qx0;x12S

�. Qx0/

Z
A
a
.1; Qx0; x1I da/C

1

2

X
x12S

Z
A
F1.a/ Q
.1; x0; x1I da/:

Similarly to (7.4),


" 2M"
relax.0; �/ if and only if

1

2

X
x12S

Z
A
F1.a/


".1; x0; x1I da/ �
2

9
C "; 8x0 2 S; (7.8)

and in this case, for any x0 2 S,

J.0; �; 
"I x0; 

"/ D

1

2

X
Qx0;x12S

�. Qx0/

Z
A
a
".1; Qx0; x1I da/C

1

2

X
x12S

Z
A
F1.a/


".1; x0; x1I da/:(7.9)

Let OMrelax denote the set of 
� W S2 ! P .f1
3
; 2
3
g/ and set

OJ .
�/ WD
1

2

X
x0;x12S

�.x0/
h1
3

�.x0; x1I

1

3
/C

2

3

�.x0; x1I

2

3
/
i
C
2

9
: (7.10)

We claim that, for any 
" 2M"
relax

.0; �/, there exists O
" 2 OMrelax such thatˇ̌̌
J.0; �; 
"I x0; 


"/ � OJ . O
"/
ˇ̌̌
� C
p
": (7.11)

On the other hand, for any 
� 2 OMrelax , denote

A"1 WD .
1

3
;
1

3
C
p
"�; A"2 WD Œ

2

3
�
p
";
2

3
/; A"3 WD An.A"1 [ A

"
2/; (7.12)

and set 
" 2 Arelax such that


".1; x0; x1I da/ WD
1

2
p
"

h

�.x0; x1I

1

3
/1A"1.a/C 


�.x0; x1I
2

3
/1A"2.a/

i
da:
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Note that F1.a/ � .13 C
p
"/.2

3
�
p
"/ D 2

9
C

p
"
3
� ", 
".1; x0; x1I da/-a.s. Then it is clear that


" 2M

p
"

3
�"

relax
. Moreover, one can easily verify thatˇ̌̌
J.0; �; 
"I x0; 


"/ � OJ . O
"/
ˇ̌̌

�

2X
iD1

1

2

X
Qx0;x12S

�. Qx0/

�.x0; x1I

i

3
/
ˇ̌̌ 1
p
"

Z
A"
i

ada �
i

3

ˇ̌̌
C

p
"

3
� " � C

p
":

This, together with (7.11) and (4.3), implies that Vrelax.0; �/ D
n
.y; y/ W y 2 OVrelax.0; �/

o
and,

by denoting � WD 1
2

P
x12S

h
1
3

�.x; x1I

1
3
/C 2

3

�.x; x1I

2
3
/
i
2 Œ1

3
; 2
3
� and similarly for �,

OVrelax.0; �/ WD
n
OJ .
�/ W 
� 2 OMrelax

o
D

n
��.x/C ��.x/C

2

9
W �; � 2 Œ

1

3
;
2

3
�
o
:

It remains to prove (7.11). Let 
" satisfies (7.8). Then, for any x0 2 S, we have

" �
1

2

X
x12S

Z
A
F1.a/


".1; x0; x1I da/ �
2

9
D
1

2

X
x12S

Z
A
.a �

1

3
/.
2

3
� a/
".1; x0; x1I da/

�
1

2

X
x12S

Z
A"3

.a �
1

3
/.
2

3
� a/
".1; x0; x1I da/ �

p
".
1

3
�
p
"/
1

2

X
x12S

Z
A"3


".1; x0; x1I da/:

Thus Z
A"3


".1; x0; x1I da/ � C
p
"; 8x0; x1 2 S:

Recall (7.12) and set O
" 2 OMrelax by:

O
".x0; x1I
1

3
/ WD


".1; x0; x1IA
"
1/P2

iD1 

".1; x0; x1IA

"
i /
; O
".x0; x1I

2

3
/ WD


".1; x0; x1IA
"
2/P2

iD1 

".1; x0; x1IA

"
i /
:

Then F1.a/ D 2
9

, O
".x0; x1I da/-a.s., and thusˇ̌̌
J.0; �; 
"I x0; 


"/ � OJ . O
"/
ˇ̌̌

�

2X
iD1

1

2

X
Qx0;x12S

�. Qx0/
ˇ̌̌ Z

A"
i

a
".1; Qx0; x1I da/ �
i

3
O
". Qx0; x1IA

"
i /
ˇ̌̌

C
1

2

X
Qx0;x12S

�. Qx0/

Z
A"3

a
".1; Qx0; x1I da/C
ˇ̌̌1
2

X
x12S

Z
A
F1.a/


".1; x0; x1I da/ �
2

9

ˇ̌̌
� C

2X
iD1

ˇ̌

".1; Qx0; x1IA

"
i / � O


". Qx0; x1IA
"
i /
ˇ̌
C C
p
"

� C
1 �

P2
iD1 


".1; Qx0; x1IA
"
i /P2

iD1 

".1; Qx0; x1IA

"
i /
C C
p
" �

C
p
"

1 � C
p
"
C C
p
" � C

p
":
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This proves (7.11).

Our next example shows that the left inclusion in (3.13) fails if we remove the L-Lipschitz
continuity requirement, as mentioned in Remark 3.8 (ii). This justifies our uniform regularity re-
quirement on the admissible controls in order to have the desired convergence as in Theorem 3.6.
Recall VN;" and VN;";1 in Remark 3.8 (ii).

Example 7.2 Let T;S; q be as in Example 7.1, and

A D Œ
1

3
;
2

3
�; F � 0; G.x; �/ D

20

9
� 5�.x/; G.x; �/ D

20

9
� 3�.x/:

Then, for any � 2 P0.S/ and �N
Ex
2 PN .S/ with �N

Ex
! �, .0; 0/ is in

\
">0

lim
N!1

V
N;";1
state .0; �

N
Ex
/

and
\
">0

lim
N!1

V
N;"
state.0; �

N
Ex
/, but not in Vstate.0; �/.

Proof (i) We first compute Vstate.0; �/. For ˛; Q̨ 2 Astate (which do not depend on�), similarly
to (7.2) we have

�˛1.x/ D
1

2
; �˛2.x/ D

1

2

X
x12S

˛.1; x1/; P�
˛I0;x0; Q̨ .X1 D x/ D

1

2
;

P�
˛I0;x0; Q̨ .X2 D x/ D

X
x12S

P�
˛I0;x0; Q̨ .X1 D x1/q.1; x1; �

˛
1 ; Q̨ .1; x1/I x/ D

1

2

X
x12S

Q̨ .1; x1/:
(7.13)

Then

J.0; �; ˛I x0; Q̨ / D EP�
˛ I0;x0; Q̨

ŒG.X2; �
˛
2/�

D
20

9
� 5P�

˛I0;x0; Q̨ .X2 D x/�
˛
2.x/ � 3P

�˛I0;x0; Q̨ .X2 D x/�
˛
2.x/

D
20

9
�
5

2

X
x12S

Q̨ .1; x1/ �
1

2

X
x12S

˛.1; x1/ � 3
h
1 �

1

2

X
x12S

Q̨ .1; x1/
ih
1 �

1

2

X
x12S

˛.1; x1/
i

D
1

2

h
3 � 4

X
x12S

˛.1; x1/
i X
x12S

Q̨ .1; x1/C
3

2

X
x12S

˛.1; x1/ �
7

9
:

Note that, when
P
x12S ˛.1; x1/ >

3
4

, inf Q̨2Astate J.0; �; ˛I x0; Q̨ / is achieved at Q̨ � 2
3

. SinceP
x12S

2
3
D

4
3
> 3
4

, then ˛ � 2
3

is an equilibrium with

J.0; �;
2

3
I x0;

2

3
/ D

1

2

h
3 � 4

X
x12S

2

3

i X
x12S

2

3
C
3

2

X
x12S

2

3
�
7

9
D �

1

3
; 8x0 2 S:

Similarly, when
P
x12S ˛.1; x1/ <

3
4

, inf Q̨2Astate J.0; �; ˛I x0; Q̨ / is achieved at Q̨ � 1
3

. SinceP
x12S

1
3
D

2
3
< 3
4

, then ˛ � 1
3

is also an equilibrium with

J.0; �;
1

3
I x0;

1

3
/ D

1

2

h
3 � 4

X
x12S

1

3

i X
x12S

1

3
C
3

2

X
x12S

1

3
�
7

9
D
1

3
; 8x0 2 S:
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Moreover, when
P
x12S ˛.1; x1/ D

3
4

, then all Q̨ , including Q̨ D ˛, are minimizers of J , and thus
such ˛ is an equilibrium. In this case

J.0; �; ˛I x0; ˛/ D
3

2

X
x12S

˛.1; x1/ �
7

9
D
3

2
�
3

4
�
7

9
D
25

72
; 8x0 2 S:

Put all cases together, we have Vstate.0; �/ D
˚
.�1

3
;�1

3
/; .1

3
; 1
3
/; .25

72
; 25
72
/
	
.

(ii) We next show that .0; 0/ 2
T
">0 limN!1 V

N;"
state.0; �

N
Ex
/. Set

˛.t; x; �/ WD ˛.�/ WD
1

3
1
f�.x/� 1

2
g
C
2

3
1
f�.x/> 1

2
g
; EN1 WD f�

N
1 .x/ �

1

2
g; EN2 WD f�

N
1 .x/ >

1

2
g;

where ˛ does not depend on .t; x/. Then, for any Q̨ W T � S � P .S/! A, recalling the setting in
Subsection 3.1 and denoting P i WD P0;Ex;.˛; Q̨/i , we have

Ji .0; Ex; .˛; Q̨ /i / D EP i �G.X i2; �N2 /� D 20

9
� EP i �5�N2 .x/1fX i2Dxg C 3�N2 .x/1fX i2Dxg�

D
20

9
�
1

N
EP i �51

fX i2Dxg
C 31

fX i2Dxg

�
�
1

N

X
j¤i

EP i �51
fX
j
2DX

i
2Dxg

C 31
fX
j
2DX

i
2Dxg

�
D
20

9
�
1

N

X
j¤i

EP i
h
5˛.�N1 / Q̨ .1; X

i
1; �

N
1 /C 3Œ1 � ˛.�

N
1 /�Œ1 � Q̨ .1; X

i
1; �

N
1 /
�i
CO

� 1
N

�
D
20

9
� EP i

h�
2 �

1

3
Q̨ .1; X i1; �

N
1 /
�
1EN1 C

�
1C

7

3
Q̨ .1; X i1; �

N
1 /
�
1EN2

i
CO

� 1
N

�
:

Notice that, under each P i , X11 ; � � � ; X
N
1 are i.i.d. with P i .X

j
1 D x/ D P i .X

j
1 D x/ D 1

2
. Thus

we may use a common NP , under which EX1 has the above distribution, such that

Ji .0; Ex; .˛; Q̨ /i / D
20

9
� E

NP
h�
2 �

1

3
Q̨ .1; X i1; �

N
1 /
�
1EN1 C

�
1C

7

3
Q̨ .1; X i1; �

N
1 /
�
1EN2

i
CO

� 1
N

�
:

(7.14)
If we ignore the term O

�
1
N

�
, clearly Q̨ D ˛ is the minimizer of the above Ji . Then for fixed " > 0

and for N large enough, ˛ is an "-minimizer for all i , and thus ˛ is an "-equilibrium. Note that
N�N1 .x/ D

PN
iD1 1

fX i1Dxg
has distribution Binomial(N; 1

2
) under NP . Then NP .EN1 / D

1
2

when N
is odd, and

1

2
� NP .EN1 / �

1

2
C NP .N�N1 .x/ D

N

2
/ D

1

2
C

1

2N

�
N
N
2

�
D
1

2
CO

� 1
p
N

�
;

when N is even. Thus

Ji .0; Ex; ˛/ D
20

9
�
17

9
NP .EN1 / �

23

9
NP .EN2 /CO

� 1
N

�
D
20

9
�
1

2
Œ
17

9
C
23

9
�CO

� 1
p
N

�
D O

� 1
p
N

�
:

Since �N
Ex
! � 2 P0.S/, we have �N

Ex
2 P0.S/ for N large enough. Then, in light of (3.5),

JN .0; x0; �
N
Ex
; ˛/ D O

� 1
p
N

�
; 8x0 2 S:
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This implies that .0; 0/ 2
T
">0 limN!1 V

N;"
state.0; �

N
Ex
/.

(iii) We finally show that .0; 0/ 2
T
">0 limN!1 V

N;";1
state .0; �

N
Ex
/. Set

˛N .t; x; �/ WD
1

3
1f�.x/�pN g C

2

3
1f�.x/�qN g C

�1
3
C
N

3

�
�.x/ � pN

��
1fpN<�.x/<qN g;

where pN WD
1

2
�

1

2N
; qN WD

1

2
C

1

2N
QEN1 WD

˚
�N1 .x/ � pN

	
; QEN2 WD

˚
�N1 .x/ � qN

	
; QEN3 WD

˚
pN < �N1 .x/ < qN

	
:

Then clearly ˛N 2 A1state. For any Q̨ 2 A1state, similarly to (7.14) we have

Ji .0; Ex; .˛
N ; Q̨ /i / D

20

9
� E

NP
h�
2 �

1

3
Q̨ .1; X i1; �

N
1 /
�
1 QEN1 C

�
1C

7

3
Q̨ .1; X i1; �

N
1 /
�
1 QEN2

�
�
5˛.�N1 / Q̨ .1; X

i
1; �

N
1 /C 3Œ1 � ˛.�

N
1 /�Œ1 � Q̨ .1; X

i
1; �

N
1 /�

�
1 QEN3

i
CO

� 1
N

�
:

Again, fix " > 0 and consider N large enough. On QEN1 [ QE
N
2 , it is optimal to choose Q̨ D ˛N , up

to the error O
�
1
N

�
. Then

Ji .0; Ex; .˛
N ; Q̨ /i / � Ji .0; Ex; ˛

N / � C NP . QEN3 /CO
� 1
N

�
;

When N is odd, QEN3 D ; and thus NP . QEN3 / D 0. When N is even,

NP . QEN3 / D
NP .�N1 .x/ D

1

2
/ D

1

2N

�
N
N
2

�
D O

� 1
p
N

�
:

So in both cases, we have

Ji .0; Ex; .˛
N ; Q̨ /i / � Ji .0; Ex; ˛

N / � O
� 1
p
N

�
;

That is, ˛N 2 M
N;";1
state .0; �

N
Ex
/ for N large enough. Thus JN .0; �; �NEx ; ˛

N / 2 V
N;";1
state .0; �

N
Ex
/.

Then by similar arguments as in (ii) we see that .0; 0/ 2
T
">0 limN!1 V

N;";1
state .0; �

N
Ex
/.

Remark 7.3 Consider the setting in Example 7.2 (ii). Denote P˛ D P0;Ex;˛, we have

EP˛ Œ�N2 .x/� D
1

N

NX
iD1

P˛.X i2 D x/ D
1

N

NX
iD1

E
NP �˛.�N1 /�

D
1

3
NP
�
�N1 .x/ �

1

2

�
C
2

3
NP
�
�N1 .x/ >

1

2

�
D
1

2
I

EP˛ Œj�N2 .x/j
2� D

1

N 2

NX
i;jD1

P˛.X i2 D X
j
2 D x/ D

1

N 2

NX
iD1

E
NP �˛.�N1 /�C 1

N 2

X
i¤j

E
NP �
j˛.�N1 /j

2
�

D
1

9
NP
�
�N1 .x/ �

1

2

�
C
4

9
NP
�
�N1 .x/ >

1

2

�
CO

� 1
N

�
D

5

18
CO

� 1
N

�
I

VarP˛ .�N2 .x// D
5

18
CO

� 1
N

�
� .

1

2
/2 D

1

36
CO

� 1
N

�
:
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Then we see that the random measure �N2 under P˛, which is an O. 1p
N
/-equilibrium measure of

the N -player problem, does not converge to a deterministic measure. This explains why [32] intro-
duced the weak mean field equilibrium when considering the convergence issue for all measurable
controls. However, we shall emphasize again that, as pointed out in Remark 3.8 (iii), measurable
controls/equilibria are not desirable for numerical or practical purpose.

7.2 The subtle path dependence issue in Remark 4.3

In this subsection we elaborate Remark 4.3 (ii) and (iii). Throughout the subsection, q; F;G are
state dependent as in Section 2. As we always saw in Example 7.1, in general Vstate ¤ Vpath,
confirming Remark 4.3 (ii). We now turn to Remark 4.3 (iii) for relaxed controls. For simplicity
we verify it only for raw set values. The equality for set values follow similar ideas but with more
involved approximations, as we saw in Example 7.1 (iv). Let Arelax be the path dependent ones in
Section 4, and Astate

relax
denote the subset taking the form 
.t; x; da/. We emphasize again that here

we are considering state dependent q; F;G. Fix t D 0 and � 2 P0.S/.

Lemma 7.4 For any 
 2 Arelax , define

Q
.s; x; da/ WD
1

�


s .x/

X
x2Xs WxsDx

�


s^�.x/
.s; x; da/; where �
s .x/ WD

X
x2Xs WxsDx

�


s^�.x/: (7.15)

Then Q
 2 Astate
relax

and � Q
s D �


s .

Proof First it is obvious that

Q
.s; x;A/ D
1

�


s .x/

X
x2Xs WxsDx

�


s^�.x/
.s; x;A/ D

1

�


s .x/

X
x2Xs WxsDx

�


s^�.x/ D 1;

so Q
 2 Astate
relax

. Next, by definition � Q
0 D � D �


0 . Assume � Q
s D �



s , then for s C 1,

�
Q

sC1.x/ D

X
Qx2S

� Q
s . Qx/

Z
A
q.s; Qx; � Q
s ; aI x/ Q
.s; Qx; da/

D

X
Qx2S

�
s . Qx/

Z
A
q.s; Qx; �
s ; aI x/

1

�


s . Qx/

X
x2Xs WxsDQx

�


s^�.x/
.s; x; da/

D

X
x2Xs

�


s^�.x/

Z
A
q.s; xs; �
s ; aI x/
.s; x; da/ D �



sC1.x/:

This completes the induction argument.

Lemma 7.5 If 
� 2 Arelax is a relaxed MFE at .0; �/, then the corresponding Q
� 2 Astate
relax

is a
state dependent relaxed MFE at .0; �/. Moreover, in this case we have

J.0; �; 
�I x; 
�/ D J.0; �; Q
�I x; Q
�/: (7.16)
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Proof First, by Lemma 7.4 it is straightforward to verify thatZ
S
J.0; �; 
 I x; 
/�.dx/ D

Z
S
J.0; �; Q
 I x; Q
/�.dx/:

On the other hand, since 
� 2 Arelax , by the standard control theory we have

inf

2Arelax

J.0; �; 
�I x; 
/ D v.�

�

I 0; x/ D v.� Q

�

I 0; x/ D inf

 02Astate

relax

J.0; �; Q
�I x; 
 0/: (7.17)

ThenZ
S
J.0; �; Q
�I x; Q
�/�.dx/ D

Z
S
J.0; �; 
�I x; 
�/�.dx/ D

Z
S
v.� Q


�

I 0; x/�.dx/:

Since J.0; �; Q
�I x; Q
�/ � v.� Q

�

I 0; x/ and supp .�/ D S, then J.0; �; Q
�I x; Q
�/ D v.� Q

�

I 0; x/

for all x 2 S. This implies that Q
� 2 Astate
relax

is a state dependent relaxed MFE at .0; �/, and
consequently (7.17) leads to (7.16).

Theorem 7.6 The MFGs with state dependent relaxed controls and path dependent relaxed controls
have the same relaxed raw set value.

Proof By Lemma 7.5, clearly the path dependent raw set value is included in the state dependent
raw set value. On the other hand, for any state dependent relaxed control O
� 2 Astate

relax
, we may

still view 
� WD O
� as a path dependent relaxed control7, and it is straightforward to verify that the
Q
� 2 Astate

relax
corresponding to 
� is equal to O
�. Then, following the arguments in Lemma 7.5,

in particular (7.17), one can easily show that J.0; �; 
�I x; 
�/ D v.�

�

I 0; x/ and thus 
� is also
an MFE among Arelax . Therefore, J.0; �; 
�I �; 
�/ belong to the path dependent raw set value as
well.

7.3 Some technical proofs

Proof of Theorem 2.7. Let QVstate.t; �/ D
T
">0
QV "
state.t; �/ denote the right side of (2.17) in the

obvious sense. We shall follow the arguments in Theorem 2.4.
(i) We first prove QVstate.t; �/ � Vstate.t; �/. Fix ' 2 QVstate.t; �/, " > 0, and set "1 WD "

4
.

Since ' 2 QV "1
state.t; �/, there exist desirable  and ˛� 2 M

"1
state.T0;  I t; �/ as in (2.17), and the

property  .�; �˛
�

T0
/ 2 V

"1
state.T0; �

˛�

T0
/ implies further that there exists Q̨� 2M

"1
state.T0; �

˛�

T0
/ such

that

k' � J.T0;  I t; �; ˛
�
I �; ˛�/k1 � "1; k .�; �

˛�

T0
/ � J.T0; �

˛�

T0
; Q̨�I �; Q̨�/k1 � "1:

7While it is trivial that Astate
relax

� A
path
relax

WD Arelax , as stated here, in general it is not trivial that Mstate
relax

�

M
path
relax

, because for the latter one has to compare with other path dependent relax controls, which is a stronger require-

ment than that for Mstate
relax

. The rest of the proof is exactly to prove Mstate
relax

�M
path
relax

.
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Denote Ǫ� WD ˛�˚T0 Q̨
� 2 Astate. Then, for any ˛ 2 Astate and x 2 S, similar to the arguments

in Proposition 2.3 (i), we have

J.t; �; Ǫ�I x; ˛/ D EP�
˛�It;x;˛

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; ˛/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛.s; Xs//
i

� EP�
˛�It;x;˛

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; Q̨

�/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛.s; Xs//
i
� "1

� EP�
˛�It;x;˛

h
 .XT0 ; �

˛�

T0
/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛.s; Xs//
i
� 2"1

D J.T0;  I t; �; ˛
�
I x; ˛/ � 2"1 � J.T0;  I t; �; ˛

�
I x; ˛�/ � 3"1

D EP�
˛�It;x;˛�

h
 .XT0 ; �

˛�

T0
/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛
�.s; Xs//

i
� 3"1

� EP�
˛�It;x;˛�

h
J.T0; �

˛�

T0
; Q̨�IXT0 ; Q̨

�/C

T0�1X
sDt

F.s;Xs; �
˛�

s ; ˛
�.s; Xs//

i
� 4"1

D J.t; �; Ǫ�I x; Ǫ�/ � ":

That is, Ǫ� 2M"
state.t; �/. Moreover, note that

k' � J.t; �; Ǫ�I �; Ǫ�/k1 � "1 C kJ.T0;  I t; �; ˛
�
I �; ˛�/ � J.t; �; Ǫ�I �; Ǫ�/k1

D "1 C sup
x2S

ˇ̌̌
EP�

˛�It;x;˛�
h
 .XT0 ; �

˛�

T0
/ � J.T0; �

˛�

T0
; Q̨�IXT0 ; Q̨

�/
iˇ̌̌
� 2"1 � ":

Then ' 2 V "
state.t; �/. Since " > 0 is arbitrary, we obtain ' 2 Vstate.t; �/.

(ii) We now prove the opposite inclusion. Fix ' 2 Vstate.t; �/ and " > 0. Let "1 > 0 be a
small number which will be specified later. Since ' 2 V

"1
state.t; �/, there exists ˛� 2M

"1
state.t; �/

such that k' � J.t; �; ˛�I �; ˛�/k1 � "1. Introduce  .x; �/ WD J.T0; �; ˛
�I x; ˛�/. By (2.10) we

have

k' � J.T0;  I t; �; ˛
�
I �; ˛�/k1 D k' � J.t; �; ˛

�
I �; ˛�/k1 � "1:

Moreover, since ˛� 2M
"1
state.t; �/, for any ˛ 2 Astate and x 2 S, we have

J.T0;  I t; �; ˛
�
I x; ˛�/ D J.t; �; ˛�I x; ˛�/

� J.t; �; ˛�I x; ˛ ˚T0 ˛
�/C "1 D J.T;  I t; �; ˛

�
I x; ˛/C "1:

This implies that ˛� 2M
"1
state.T0;  I t; �/. We claim further that

 .�; �˛
�

T0
/ 2 VC"1.T0; �

˛�

T0
/; (7.18)

for some constant C � 1. Then by (2.17) we see that ' 2 QVC"1
state.t; �/ �

QV "
state.t; �/ by setting

"1 �
"
C

. Since " > 0 is arbitrary, we obtain ' 2 QVstate.t; �/.
To show (7.18), we follow the arguments in Proposition 2.3 (ii). Recall v in (2.5) and the

standard DPP (2.11) for v, for any x 2 S we have

EP�
˛�It;x;˛�

h
J.T0; �

˛�

T0
; ˛�IXT0 ; ˛

�/
i
� inf

˛2Astate
EP�

˛�It;x;˛�
h
J.T0; �

˛�

T0
; ˛�IXT0 ; ˛/

i
C "1

D EP�
˛�It;x;˛�

h
v.�˛

�

IT0; XT0/
i
C "1;
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It is obvious that v.�˛
�

IT0; �/ � J.T0; �
˛�

T0
; ˛�I �; ˛�/. Moreover, since q � cq , clearly

P�
˛� It;x;˛�.XT0 D Qx/ � c

T0�t
0 , for any Qx 2 S. Thus, for C WD ct�T00 ,

0 � J.T0; �
˛�

T0
; ˛�I Qx; ˛�/ � v.�˛

�

IT0; Qx/

� CEP�
˛�It;x;˛�

h�
J.T0; �

˛�

T0
; ˛�IXT0 ; ˛

�/ � v.�˛
�

IT0; XT0/
�
1fXT0DQxg

i
� CEP�

˛�It;x;˛�
h�
J.T0; �

˛�

T0
; ˛�IXT0 ; ˛

�/ � v.�˛
�

IT0; XT0/
�i
� C"1:

This implies that ˛� 2M
C"1
state.T0; �

˛�

T0
/. Since .�; �˛

�

T0
/ D J.T0; �

˛�

T0
; ˛�I �; ˛�/, we obtain (7.18)

immediately, and hence ' 2 QVstate.t; �/.

Proof of the claim in Remark 4.7. By (4.16) and (4.17) we have
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That is, 
 .ƒ

 / D 
 .

Proof of Lemma 6.4. Clearly the uniform estimate for J.�˛I �/ implies that for v.�˛I �/, so we
shall only prove the former one. Fix .t; �/ 2 Œ0; T � � P2 and ˛; Q̨ 2 Acont , and denote u.s; x/ WD
J.�˛I Q̨ ; s; x/. By standard PDE theory u is a classical solution to the linear PDE in (6.4) and we
have the following formula: denoting Xs;xr WD x C Br � Bs ,

@xu.s; x/ D EP
h
Œg.X
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Then, by the Lipschitz continuity of g and the boundedness of b and f ,
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�
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1
2

, we obtain NK � C1 WD 2Ce�T , which
implies the desired estimate immediately.

Proof of Proposition 6.7. Fix .t; Ex; Ę; Nx; Qx/ and i . For any Q̨ 2 AL
cont , introduce N̨ .s; x; �/ WD
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By the Girsanov Theorem we have

Ji .t; .Ex
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Similarly define QX i , Q�N , QM j , Qbi , Qbj corresponding to . Qx; Q̨ / in the obvious sense. Then we have a
similar expression as above and N̨ .s; NX is ; �/ D Q̨ .s; QX
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s ; �/. Therefore,
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(7.19)

where
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Denote �x WD Nx � Qx. Note that
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(7.20)

By the required Lipschitz continuity, we have
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Next, introduce
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Note that B1; � � � ; BN are independent. By applying the Itô formula, we have
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Note that, by (7.20),
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Then, by (7.19), (7.21) and (7.22) we have
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Since Q̨ 2 AL is arbitrary, we obtain vN;Li
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