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Abstract

In this paper we study mean field games with possibly multiple mean field equilibria. In-
stead of focusing on the individual equilibria, we propose to study the set of values over all
possible equilibria, which we call the set value of the mean field game. When the mean field
equilibrium is unique, typically under certain monotonicity conditions, our set value reduces to
the singleton of the standard value function which solves the master equation. The set value
is by nature unique, and we shall establish two crucial properties: (i) the dynamic program-
ming principle, also called time consistency; and (ii) the convergence of the set values of the
corresponding N -player games, which can be viewed as a type of stability result. To our best
knowledge, this is the first work in the literature which studies the dynamic value of mean field
games without requiring the uniqueness of mean field equilibria. We emphasize that the set
value is very sensitive to the type of the admissible controls. In particular, for the convergence
one has to restrict to corresponding types of equilibria for the N-player game and for the mean
field game. We shall illustrate this point by investigating three cases, two in finite state space
models and the other in a continuous time model with controlled diffusions.
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1 Introduction

In this paper we study Mean Field Games (MFG, for short) without monotonicity conditions. There
are typically multiple Mean Field Equilibria (MFE, for short) with possibly different values. Instead
of focusing on the individual equilibria, we propose to study the set of values over all equilibria,
which we call the set value of the MFG. Note that the set value always exists (with empty set as
a possible value) and is by definition unique. When the MFE is unique, typically under certain
monotonicity conditions, our set value is reduced to the singleton of the standard value function
of the game, which solves the so called master equation. So the set value can be viewed as the
counterpart of the standard value function for MFGs without monotonicity conditions, and it indeed
shares many nice properties. In this paper, we focus particularly on two crucial properties of the set
value:

e the Dynamic Programming Principle (DPP, for short), or say the time consistency;

o the convergence of the set values of the corresponding N -player games, which can be viewed
as a type of stability result in terms of model perturbation.

For general theory of MFGs, we refer to Caines-Huang-Malhame [7], Lasry-Lions [34], Lions [36],
Cardaliaguet [8], Bensoussan-Frehse-Yam [6], and Camona-Delarue [13, 14].

In standard stochastic control theory, it is well known that the dynamic value function satisfies
the DPP. In fact, this is the underlying reason for the PDE approach to work. For MFGs under
appropriate monotonicity conditions, the value function (at the unique MFE) also satisfies the DPP,
which, together with the It formula, leads to the master equation. However, with the presence of
multiple equilibria (see, e.g., Bardi-Fischer [2] for some examples), to our best knowledge this is the
first work in the literature to study the MFG dynamically and to address the time consistency issue.
We show that, when formulated properly, the dynamic set value function satisfies the DPP. This also
opens the door to a possible PDE approach for these general games by introducing the so called
set valued PDE. We refer to our work [30] for set valued PDEs induced by multivariate stochastic
control problems, and Ma-Zhang-Zhang [37] for numerical methods for set valued PDEs, and we
leave their extension to mean field games for future research. Our set value approach follows from
Feinstein-Rudloff-Zhang [24], which studies nonzero sum games with finitely many players. See
also the related works Abreu-Pearce-Stacchetti [1] and Sannikov [42] in economics literature, and
Feinstein [23] which studies the set of equilibria instead of values.

We note that the set value of games relies heavily on the types of admissible controls we use. In
this paper we shall consider closed loop controls. The open loop equilibria of games are typically
time inconsistent, see e.g. Buckdahn’s counterexample in Pham-Zhang [40, Appendix E] for a two
person zero sum game, and consequently, the set value of games with open loop controls would
violate the DPP. For the MFG, noting that the required symmetry decomposes the game problem
into a standard control problem and a fixed point problem of measures, and that open loop and
closed loop controls yield the same value function for a standard control problem, it is possible that
the set value with open loop controls still satisfies the DPP. Nevertheless, bearing in mind the DPP
of the set value for more general (non-symmetric) games, as well as the practical consideration in
terms of the information available to the players, we shall focus on closed loop controls. There is
also a very subtle path dependence issue. While the game parameters are state dependent, we may
consider both state dependent and path dependent controls. For general non-zero sum games (not
mean field type), [24] shows that DPP holds for the set value for path dependent controls, but in



general fails for the set value for state dependent controls. For MFGs with closed loop controls,
again due to the required symmetric properties, the set values for both state dependent controls and
path dependent controls will satisfy the DPP, but they are in general not equal. For MFGs with
closed loop relaxed controls, or say closed loop mixed strategies, however, it turns out that the state
dependent controls and the path dependent controls induce the same set value which still satisfies
the DPP.

We next turn to the convergence issue. Let V and V¥ denote the set values of the MFG and the
corresponding N -player games, respectively, under appropriate closed-loop controls. Our conver-
gence result reads roughly as follows (the precise form is slightly different):

N
1
: N AN N ._
Nllm V7(0,x) =V(0,pn), when uy = v E Ox; = M. (1.1)

i=1

In the realm of master equations, again under certain monotonicity conditions and hence with unique
MFE, one can show that the values of the N-player games converge to the value of the MFG.
See Cardaliaguet-Delarue-Lasry-Lions [10], followed by Bayraktar-Cohen [3], Cardaliaguet [9],
Cecchin-Pelino [17], Delarue-Lacker-Ramanan [20, 21], Gangbo-Meszaros [29], and Mou-Zhang
[38], to mention a few. So (1.1) can be viewed as their natural extension to MFGs without mono-
tonicities.

We emphasize again that the set value is very sensitive to the types of admissible controls.
To ensure the convergence, one simple but crucial observation is that the N-player game and the
MEFG should use the “same” type of controls (more precisely, corresponding types of controls in
appropriate sense). We illustrate this point by considering two cases. Note that in the standard
literature each player is required to use the same closed loop control along an MFE. For the first
case, we will obtain the desired convergence by restricting the N-player game to homogeneous
equilibria, namely each player also uses the same closed loop control. In the second case, we
remove such restriction and consider heterogenous equilibria for the N-player games. Note that a
closed loop control means the control depends only on the state. In this heterogenous case players
with the same state may choose different controls, then one can not expect in the limit they will
have to use the same control'. Indeed, in this case the limit is characterized by the MFG with
closed loop relaxed controls, or say closed loop mixed strategies, which exactly means players with
the same state may still have a distribution of controls to choose from. However, since our relax
control for MFG is still homogeneous, namely each player uses the same relax control, the controls
for N-player game and for MFG appear to be in different forms. Our approach is to introduce a
new formulation for the MFG, which embeds the structure of heterogenous controls and shares the
same set value as the relax control formulation of the MFG. For the homogeneous case, we will
investigate both a discrete time model with finite state space and a continuous time diffusion model
with drift controls. But for the heterogeneous case we will investigate the discrete model only. The
continuous model in such case involves some technical challenges for the convergence and we shall
leave it for future research. We shall point out that, however, the DPP would hold in much more
general models without significant difficulties.

To ensure the convergence, another main feature is that we define the set value as the limit of
the approximate set values over approximate equilibria, rather than the true equilibria. We call the

'When the MFE is unique, under appropriate monotonicity conditions, the set value becomes a singleton and it is
not sensitive to the type of admissible controls anymore. Consequently, the convergence becomes possible even if the
N -player games and the MFG use different types of controls, see e.g. [10]



latter the raw set value, and both the set value and the raw set value satisfy the DPP. However, the
raw set value is extremely sensitive to small perturbations of the game parameters, in fact, in general
even its measurability is not clear, so one can hardly expect the convergence for the raw set values.
In the standard control theory, the value function is defined as the infimum of controlled values,
which is exactly the limit of values over approximate optimal controls, rather than the value over
true optimal controls which may not even exist. So our set value, not the raw set value, is the natural
extension of the standard value function in control theory. Moreover, since we are considering
infinitely many players, an approximate equilibrium means it is approximately optimal for most
players, but possibly with a small portion of exceptions, as introduced in Carmona [11].

We would like to mention that, although it is not the focus of the present paper, the set value
is also numerically a lot easier to compute than the raw set value. For example, the duality result
for set values in [24, Section 3.4] (for finite player games) is very useful for constructing efficient
numerical algorithms, see [37]. However, this is not feasible for the raw set value which lacks
regularity and thus is hard to approximate in general.

At this point we should mention that, for MFGs without monotonicity conditions, there have
been many publications on the convergence of N-player games, in terms of equilibria instead of
values. For open loop controls, we refer to Camona-Delarue [12], Feleqi [25], Fischer [26], Fischer-
Silva [27], Lacker [31], Lasry-Lions [34], Lauriere-Tangpi [35], and Nutz-San Martin-Tan [39], to
mention a few. In particular, [31] provides the full characterization for the convergence: any limit of
approximate Nash equilibria of N -player games is a weak MFE, and conversely any weak MFE can
be obtained as such a limit. The work [26] is also in this direction. For closed loop controls, which
we are mainly interested in, the situation becomes much more subtle. The seminal paper Lacker
[32] established the following result:

{Strong MFEs} C {Limits of N-player approx. equilibria} C {Weak MFEs}. (1.2)

Here an MFE is strong if it depends only on the state processes, and weak if it allows for additional
randomness. The left inclusion in (1.2) was known to be strict in general. This work has very
interesting further developments recently” by Lacker-Flem [33] and Djete [22]. In particular, [22]
shows that the right inclusion in (1.2) is actually an equality.

We emphasize again that we are considering the convergence of sets of values, rather than
sets of equilibria as in (1.2). For standard control problems, the focus is typically to characterize
the (unique) value and to find one (approximate) optimal control, and the player is less interested
in finding all optimal controls since they have the same value. The situation is quite different for
games, because different equilibria can lead to different values. Then it is not satisfactory to find just
one equilibrium (especially if it is not Pareto optimal). However, for different equilibria which lead
to the same value, the players are indifferent on them. So for practical purpose the players would
be more interested in finding all possible values® and then to find one (approximate) equilibrium for
each value. This is one major motivation that we focus on the set value, rather than the set of all
equilibria. We also note that in general the set value could be much simpler than the set of equilibria.
For example, in the trivial case that both the terminal and the running cost functions are constants,
the set value is a singleton, while the set of equilibria consists of all admissible controls.

We should point out that our admissible controls differ from those in [22, 32, 33]. Roughly
speaking, we put two constraints, due to both practical and technical considerations, on the N -player

2These two works [22, 33] were circulated slightly after our present paper.
3 Another very interesting question is how to choose an optimal (in appropriate sense) value after characterizing the
set value. We shall leave this for future research.



approximate equilibria so that the left inclusion in (1.2) (in terms of values instead of equilibria)
becomes an equality. First, for the N-player games, [22, 32, 33] use full information controls
ai(t, XA, X tN ), while we consider symmetric controls o; (¢, X}, ,uﬁv ), where X! is the state of
Player i, and ,uﬁv = ﬁ Zj-vzl 8,/ is the empirical measure of all the players’ states. Note that,
as a principle the controls should (iepend only on the information the players observe. While both
settings are very interesting, since N is large, the full information may not be available in many
practical situations.

The second difference is that we assume each control is Lipschitz continuous in w, while
[22, 32, 33] allow for measurable controls. We shall emphasize though we allow the Lipschitz
constant to depend on the control, and thus our set value does not depend on any fixed Lipschitz
constant. Roughly speaking, we are considering game values which can be approximated by Lip-
schitz continuous approximate equilibria. This is typically the case in the standard control theory:
even if the optimal control is discontinuous, in most reasonable framework we should be able to
find Lipschitz continuous approximate optimal controls. The situation is more subtle for games.
There may exist (closed loop) equilibria whose values cannot be approximated by any Lipschitz
continuous approximate equilibria. In fact, when considering all measurable equilibria, the con-
vergence of set values in (1.1) fails in general, see Example 7.2 and Remark 7.3 below. While
clearly more general and very interesting mathematically, such measurable equilibria are hard to
implement in practice, since inevitably we have all sorts of errors in terms of the information, or
say, data. Their numerical computation is another serious challenge. For example, in the popular
machine learning algorithm, the key idea is to approximate the controls via composition of linear
functions and the activation function, then by definition the optimal controls/equilibria provided by
these algorithms are (locally) Lipschitz continuous. That is, the game values falling out of our set
value are essentially out of reach of these algorithms, see e.g. [37]. Moreover, as a consequence
of our constraints, our proof of (1.1) is technically a lot easier than the compactness arguments for
(1.2) used in [22, 32, 33].

Finally we would like to mention some other approaches for MFGs with multiple equilibria.
One is to add sufficient (possibly infinite dimensional) noise so that the new game will become
non-degenerate and hence have unique MFE, see e.g. Bayraktar-Cecchin-Cohen-Delarue [4, 5],
Delarue [18], Delarue-Foguen Tchuendom [19], Foguen Tchuendom [28]. Another approach is
to study a special type of MFEs, see e.g. Cecchin-Dai Pra-Fisher-Pelino [15], Cecchin-Delarue
[16], and [19]. Another interesting work is Possamai-Tangpi [41] which introduces an additional
parameter function A such that the MFE corresponding to any fixed A is unique and then the desired
convergence is obtained.

The rest of the paper is organized as follows. In Section 2 we introduce the set value for an
MEFG in a discrete time model on finite state space and establish the DPP, and in Section 3 we prove
the convergence for the corresponding N -player games with homogeneous equilibria. Sections
4 and 5 are devoted to MFGs with relaxed controls and the corresponding N -player games with
heterogenous equilibria. In Section 6 we study a continuous time model with controlled diffusions.
Finally in Appendix we provide some examples, discuss the subtle path dependence issue, and
complete some technical proofs.



2 Mean field games on finite space with closed loop controls

In this section we consider an MFG on finite space (both time and state are finite) with closed loop
controls, and for simplicity we restrict to state dependent setting. Since the game typically has
multiple MFEs which may induce different values, see Example 7.1 below for an example, we shall
introduce the set value of the game over all MFEs. Our goal is to establish the DPP for the MFG
set value, and we shall show in the next section that the set values of the corresponding N -player
games converge to the MFG set value.

2.1 The basic setting

Let T := {0,---,T} be the set of discrete times; T; := {¢,---,7T} for¢t € T; S the finite
state space” with size [S| = d; L (S) the set of probability measures on S, equipped with the
1-Wasserstein distance W. Since S is finite, W) is equivalent to the total variation distance’ which
is convenient for our purpose: by abusing the notation W1,

Wi(p.v) = Y Iu() —v(@)l v € P(S). @1

x€S

Let £o(S) denote the subset of . € P (S) which has full support, namely p(x) > 0 for all x € S.
Moreover, let A C R9 be a measurable set from which the controls take values; and qg:T xSx
P(S) x A xS — (0, 1) be a transition probability function:

Zq(t,x,u,a;i) =1, V(t,x,u,a)eTT xSxP(S)xA.
xesS
We shall use the weak formulation which is more convenient for closed loop controls. That is,
we fix the canonical space and consider controlled probability measures on it. To be precise, let
Q := X := ST*! be the canonical space; X : T x @ — S the canonical process: X;(w) =
wt; F = {FilieT = FX the filtration generated by X; and #Ag:4se the set of state dependent
admissible controls & : T x S — A. Introduce the concatenation for controls:

(@ &1, @)(s,x) 1= als, X)Lty + (s, X) =751, A, A € Asrare. 2.2)

It is clear that @ @71, @ € Agrgre. Given (1,1, ) € T X P(S) X Agtare, let P denote the
probability measure on ¥7 determined recursively by: fors =¢,--- , T,

POH® o X7 =, PUAY(Xoy = XXy = x) = q(s, x, u%, (s, x); X);

. (2.3)
where u& :=PH*%o X1

We note that u% := {u$}ser, are uniquely determined and X is a Markov chain on T; under
P5:H, We also note that u® depends on (z, i) as well, but we omit it for notational simplicity.
However, the distribution of {X}s—o,... s/—1 is not specified and is irrelevant, and {o}o<s<; is also
irrelevant. Moreover, given {{t.} := {{ts}seT,, X € S, and & € Agzqgze, let Pi-56X8 denote the
probability measure on 7 determined recursively by: fors =¢,--- , T — 1,

PHbtX(x, = x) =1, PWHXC(x | =5|X, =5%) =q(s, %, ws. @(s,5); %), (2.4)

4We may allow the state space S; to depend on time ¢ and all the results in this paper will remain true.
SMore precisely, the total variation distance is %Wl for the Wq in (2.1).
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As in the standard MFG literature, here we are assuming that the population uses the common
control @ while the individual player is allowed to use a different control .

We remark that, since we assume g > 0, then for any (¢, u) and o, u§ € Po(S) for all s > 7.
For the convenience of presentation, in this section we shall restrict our discussion to the case
u € Po(S). The general case that the initial measure u is not fully supported can be treated fairly
easily, as we will do in Section 6 below. The situation with degenerate g, however, is more subtle
and we shall leave it for future research.

We finally introduce the cost functional for the MFG: for the u% = {u%} in (2.3),

J(t, o x, @) = J(u% 1, x,a), v({p-}: 8, x) == _ j%nf JEp-}; s, x,@);
oe

T—1 2.5)
GOXT, ur) + Y F(r. Xy, . (7, X,) |

r=s

where J({M}’ s, X,d) = EP{M.};S,x,d[

Here, since T and S are finite, ' and G are arbitrary measurable functions satisfying

inf F(t,x,u,a) > —oo forall (¢, x, u).
acA

We remark that here v({u.}; -, -) is the value function of a standard stochastic control problem
with parameter {x.}. In particular, in continuous time models, u* and v(u%;-,-) will satisfy the
Fokker-Planck equation and the HIB equation, respectively.

Definition 2.1 Given (¢, 1) € T x Po(S), we say a* € Agiqare is a state dependent MFE at (¢, jb),
denoted as a* € Mstqre(t, 1), if

J(@, p,a*;x,a%) = v(u“*;t,x), forall x € S. (2.6)

In this and the next section, we will use the following conditions.

Assumption 2.2 (i) g > cq4 for some constant cq > 0;

(ii) q is Lipschitz continuous in (i, a), with a Lipschitz constant Lg;

(iii) F, G are bounded by a constant Co and uniformly continuous in (., a), with a modulus of
continuity function p.

2.2 The raw set value VY,

We introduce the raw set value for the MFG over all state dependent MFE:s:
Vo(r, p) := {J(t, poa®s- o) ot € Msparel(t, M)} C LO(S:R). (2.7

Here the elements of Vy(, i) are functions from S to R, which coincide with R? by identifying
@ € LO(S;R) with (p(x) : x € S) € R¥. We call Vy(r, 1) the raw set value and we will introduce
the set value V (¢, t) of the MFG in the next subsection.

Next, for any Tp € Ty, ¢ € LO(S x £(S); R), we introduce the MFG on {¢, - - - , To}:

o - To—1
I(Topit paix,@) = BP0 [y () + YD P X, Xa) | @)

s=t



In the obvious sense we define ™ € Mszqre(To, ¥;t, 0) by: forany x € S,

J(To, it poa®sx,0%) = v(T, s p® st,x) i= _ inf  J(T, 0, g, x, @). (2.9)

A€Asrate

At below we will repeatedly use the following simple fact due to the tower property of conditional
expectations:

J(@, m,o;x,@) = J(To, Vi t, u,a; x,&), where ¢ (y,v):=J(Tp,v,a;y, ). (2.10)
The following time consistency of MFE is the essence of the DPP for the raw set value.

Proposition 2.3 Fix 0 <t < To < T and u € Po(S). For any a*,a&* € Astare, denote @* =
oa* &1, a* and Y (y,v) = J(To,v,a*;y,a*). Then &* € Msrare(t, ) if and only if a* €
Mstare(To, V3 t, 1) and &* € Msiare(To, /J«%"O)-

Proof (i) We first prove the if part. Let «* € Mgzqre(To, ¥it, ) and @* € Mgraze(To, u";:).
For arbitrary « € Agsqre and x € S, by (2.10) we have
* To—1
~ At x.a * *
J(t, . &% x,0) = EF” [J(TOa#%o’a*;XTo’a)"i_ D Fs. X5 ug ’“(S’Xs))]
s=t
a*. To—1
= EP (Mo ny 5 X, @) + Y Fls X s X))
s=t
* To—1
ne st x .« * *
—EP (v Xy i) + D2 Fls Xo i (s, X))
s=t

= J(To, ¥;t, pw,a*;x,a) > J(To, Vi t, w0, x, %) = J(t, u,&%; x,&%),

where the first inequality is due to @* € Myzqre(Th, u"fg) and the second inequality is due to
oa* € Msrate(To. ¥ t, ). Then @* € Myare(t, ).

(ii) We now prove the only if part. Let @* € Mysqre(t, 0). For any a € oAgsqre, We have
o BT, &* € Agrqre. Then, since @* € Mysqse(t, ), for any x € S, by (2.10) we have

J(To, it m o x,0%) = J(t, w, @™ x,8™) < J(@t, 1, &% x,0 @1, &%) = J(T,¢;t, u, 0™ x, ).

This implies that @™ € Msrqre(To, V52, 1).
Moreover, note that «* @7, « € Agrare and again since @* € Myqre(t, 1), wWe have

EP (Mo 1y &5 X, @) + Y Fls X i@ (s, X))
s=t
=J(t, pn,a%x,@%) < J(t,n, @ x, 0" &7, @)
Pua*:t.x.tx* a* ~x = a* ok
=E [J(TO,/LTO,a ; X1y, 00) + Z F(s, Xs. p5 .o (s,Xs))].
s=t

This implies that, recalling the v in (2.5) and by the standard stochastic control theory,
]E]pu.o‘* itx.a* [

J(To, u.@% X10,6%)| = inf BN [0(To, ng, 6% Xy, )

a€Asrate

= EP

*
ne it x.a* |:

v(u®: To, X7,) | 2.11)



On the other hand, by definition v(,u&*; To, %) < J(Typ, ,u"T‘Z ,a*;x,a*) forall X € S. Then
J(To. p%, . &% Xpp.@%) = v(u®" : To, X7,), P %" a5,

Since ¢ > 0, then clearly R (X7, = X) > Oforall ¥ € S. Thus J(Tp, ,u";:,&*;i,d*) =

v(u®"; Ty, %), for all ¥ € S. This implies that @* € Msqze(To, M%)‘ [ |
We then have the following DPP.
Theorem 2.4 Forany 0 <t < Ty < T, and pu € Po(S), we have
Vo(t, p) := {J(To, Vit o a®) s forall € LO(S x £o(S);R) and o* € Agrare o1

such that (-, %) € Vo(To, u%y) and «* € Mrare(To, Vi1, u)}.

Proof  Let @O(Z,u) denote the right side of (2.12). First, for any J(Top, ¥;t, u,a*;-,a*) €
Vo(t, ;) with desired ¥, a* as in (2.12). Since W(-,u‘};) € Vo(T(),pL%;), there exists a* €
Msmte(To,/L‘%:) such that ¥ (-, [L%:) = J(To, ,Uf;z,&*; -,@*). By Proposition 2.3 we have @* :=
a* &1, @ € Mgrate(t, ). Then, by (2.10), J(To, i1, p,0™; - 0%) = J(t, p,a%;-,0%) €
Vo(z, i), and thus Vo(z, ) C Vo(z, p).

On the other hand, let J (¢, w, a™*; -, o) € Vo(z, u) witha® € Mszqze(t, pt). Introduce ¥ (x, v) :=
J(To,v,a*; x,a™). By Proposition 2.3 again we see that a* € Msrqre(To, ¥;t, ) and a* €
Mstate (~T0, ,LL“T‘Z), and the latter implies further that v (-, u";;) € VO(TO, ;L";:). Then by the defini-
tion of Vo (7, ) that J(r, u,a*;-,a*) = J(To, Y51, p,a™;-,a®) € Vo(t, ). Thatis, Vo(, u) C
Vo (2, ). u

2.3 The set value Vi;,;.

While Theorem 2.4 is elegant, the raw set value Vo (¢, ) is very sensitive to small perturbations of
the coefficients F, G and the variable p. Indeed, even the measurability of the subset Vo (¢, 1) C R?
and the measurability of the mapping u — Vo (¢, i) are not clear to us. Moreover, in general it does
not look possible to have the convergence of the raw set value of the corresponding N -player games
to Vo (¢, ). Therefore, in this subsection we shall modify Vy(z, ) and introduce the set value
Vstare(t, 1) of the MFG as follows.

Definition 2.5 (i) For any (t,n) € T x Po(S) and ¢ > 0, let ME,,,.(t. 1) denote the set of
a* € Agrare Such that

J(@t, poa*x,0*) <v(u® :t,x)+e forallx €S. (2.13)
(ii) The set value of the MFG at (t, ) is defined as:

Vstate(t, ) == ﬂ Viiate(t ),  where (2.14)

e>0

VE ot 1) 1= {(p ELOS:R) : lg — J(t. o™ a®)loo < & for some a* € ME, (. u)}-



Recall (2.5), then (2.13) and (2.14) imply that
0<J(t pa*ix,0®) v it.x) <e  o—v(p® i1, < 26 (2.15)
So we may alternatively define V¢, ;. (¢, ) by using ¢ — V(U 1, ) loo < e

Remark 2.6 (i) In the case that there is only one player, namely q, F, G do not depend on [,
PHY X0 — PLXY does not depend on pu and o*. Let
T-1
t.x.x
V(t,x):= inf EP [G(XT) +y F(s,Xs,a(s,Xs))]
s=t

QE€Agrate

denote the value function of the standard stochastic control problem. One can easily see that, when
there exists an optimal control a™, Vo (t, 1) = Vszare(t, ) = {V(t,-)}. However, when there is no
optimal control, we still have Vg (t, u) = {V(t,-)} but YVo(t, u) = @. So the natural extension
of the value function V' is the set value Vgt qte, not Vy.

(ii) We remark that (oo ME410(ts 1) = Mstare(t, 1), however, in general it is possible that
Vstare(t, 1) is strictly larger than Vo (t, ). Indeed, Va0 (t, (1) can be even larger than the closure
of Yo(t, i), where the latter is still empty when there is no optimal control.

Similarly, given To and ¥, M&,,;.(To, ¥; ¢, i) denotes the set of @* € Agzqse such that

J(To, ¥:t, o™ x,0*) < inf  J(To, ¥t pu,a*;x, @) +6, VxeS. (2.16)

a€dsrare

The DPP remains true for Vg4 after appropriate modifications as follows.

Theorem 2.7 Under Assumption 2.2 (i), forany 0 <t < To < T and u € $o(S),

Vstate(ﬂ I'L) = ﬂ {‘p € ]LO(SvR) : ||(p - J(T()v W,l, M’a*;'aa*)”OO E &
e>0

for some § € L(S x Po(S);R) and a* € Asrare such that 2.17)
W('vﬂ‘;’:) < ngtate(TO’/L%";)» " € Mga5e(To, Wﬁ»ﬂ)}-

This theorem can be proved by modifying the arguments in Theorem 2.4 and Proposition 2.3. How-
ever, since the proof is very similar to that of Theorem 4.2 below, except that the latter is in the more
complicated path dependent setting, we thus postpone it to Appendix.

3 The N-player game with homogeneous equilibria

In this section we study the N -player game whose set value will converge to Vg;q¢e.

3.1 The N-player game

Set QN := X/ with canonical processes X = (X1,---,X"), where X stands for the state
process of Player i. The empirical measure of X is denoted as: with the Dirac measure §.,
1 N
N._ N N ._ > N
py = pf o where pf = NZ% e P(S), forx = (x1,---,xy) € SV. (3.1)

i=1
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The player i will have control ’. In the literature, a closed loop control &' may depend on the
full information X . However, since we are talking about large N, in practice it may not be feasible
for each player to observe all other players’ states individually. Moreover, in the MFG setting the
population state is characterized by its distribution, not by each player’s individual state. So in this
section we consider only symmetric controls, namely o depends on his/her own state X’ and on
the others through the empirical measure u? .

In order to have the desired convergence, we introduce another parameter L > 0. Denote

Aftate = {oz TxSxPS)— A |(X(I,X,;L) —alt, x, v)} < LWi(u,v),Vt,x, u, v}, (3.2)

. L : 2 N ~ 1 N N
and A, = Upso Asiare: Givent € T, X € SV, and @ = (a',--+,a") € (Af,.)" , let
P?-*% denote the probability measure on TFTX determined recursively by: fors =¢,--- , T — 1,

N

PAEE (X, = X) = 1P (Xopy = |Xs = %) = [ g x] pul oo (5.5} ud)ix)). 3.3)
i=1

and the cost function of Player i is:

T-1
o o 3.6 : : : :
Ji0.%,8) = X GO puf) + D0 Fls X0l o s, X0 ud) . 34
s=t
Remark 3.1 (i) It is obvious that A(S)m,e = Astate for the Agiare in the previous subsection.

For the MFG, there is no need to consider Ag;,,,. Indeed, given (t,n) € T x Po(S), for any

o € A, let PUHY be defined as in (2.3): again denoting u% := PHH% o X 71,

POt o X7 =, PUY(Xoyq = XXy = x) = q(s, x, u%, als, x, u%); %).

Introduce a(s,x) = a(s,x,u¥). Then & € HAgiqre and one can easily verify that n¥ = p.
In particular, the set value Vytqze(t, ) will remain the same by allowing o € ASs,;.. For the
N -player game, however, since uN is random, the dependence on wN makes the difference.

(ii) In the literature one typically uses /Lﬁv’_l = ﬁ Zj £i 8le, rather than /Lfv, in (3.3) and
,—1i

(3.4). The convergence results in this section will remain true if we use /LN instead. However, we

find it more convenient to use p,ﬁv .

There is another crucial issue concerning the equilibria. Note that an MFE requires by definition
that each player takes the same control a*. To achieve the desired convergence, for the N -player
game it is natural to consider only the homogeneous equilibria: &y = --+ = oy, which we will do
in the rest of this section. We note that, for a homogeneous control «, the PiXe = Pi¥ (@)
in (3.3)and J; (¢, X, ) := J;(t,X, («,-++ ,@)) in (3.4) are also symmetric in X, or say invariant in
terms of its empirical measure:

Pt’i’a = Pt’ug’a, Jl(t,)_é,a) - JN(t, xi’ /’Lj'c’vva) (35)

Definition 3.2 For any ¢ > 0,L > 0, we say a* € AL .. is a homogeneous state dependent
(&, L)-equilibrium of the N -player game at (t, X), denoted as o* € ,Mé\,];f,’eL (t,X), if:
NL,, - . 5 - .
P X at) = 1an Ji(t, X, (@*,a);))+e, i=1-- N,

A€AGqre (3.6)

where (o, @); denote the vector & such that o = & and o/ = o forall j #i.

. e *
IACERAE] =
Ji(t, X, ™) <w

11



In 11ght of (3.5), clearly MY:EL (¢, %) is law invariant: Mﬁ‘,’j,ﬁ(t X) = :MﬁtfteL

;JH = ;LQ Thus, by abusing the notation, we may denote Msmte (t,X) = Stme (t /LN) and call

(¢, X") whenever

a™ a homogeneous state dependent (e, L)-equilibrium at (z, I My,
Note again that g > 0, then similar to Subsection 2.1, for convenience in this section we restrict
to only those X such that ,uév has full support, and we denote

Sy ={x eSSV uY e 2o(S)}. Pn(S):={ul ¥ e Sy} C Po(S). (3.7)

We now define the set value of the homogeneous N -player game: recalling (3.5),

N, N,e,L
Volare@ 1) = [ Varaze . 10) == () | Virare (t.10). ¥(t. ) € T x Pw(S), where
>0 e>0L>0 (38)

Vb @ = {p e LASIR) 1 30" e Mk () st llp — IV (e 0o < &

state

Remark 3.3 Note that we require & € AL . in (3.6) for the same L, so UL>0 Vsjyagtg‘ (t, ) at
N,e,00
Vv

above is in general different from V.., (t, t), which is defined in an obvious way by requiring
a*,a € A . in (3.6). See also Remark 3.8 (ii) below.

State

state

3.2 Convergence of the empirical measures

Theorem 3.4 Let Assumption 2.2 (ii) hold. Then, for any L > 0, there exists a constant Cp, which
depends only on T, d, Ly, and L such that, foranyt € T, X € Sév, e PoS), a,ac ,Aasme, and
s>t i=1,---,N,

Xo(e@); 1
EP" Wi )] < Cuby. where Oy =W )+ —=: (39

N
Wl(nf’““ﬁ)io(xg)— PHE o Y- )cheN. (3.10)

Proof We first recall Remark 3.1 and extend all the notations in Subsection 2.1 to those o €
AL .. in the obvious sense. Fix ¢,i and denote PV := P#-*(@.0)i

Step 1. We first prove (3.9) for s = ¢ 4+ 1. Note that Xt1+1’ s th\_lir1 are independent under
PN, By (2.1), we have

EF" [W1 (Mﬁv+1’ﬂ(tx+1)] = Z ]EPN[W?,H(??) - /’l’(;t-‘rl(i)l]

ics
< Xé (EP" (I ) - u?‘ﬂ()%)ﬂ)é
= Xé[Var [ ]+ (BF [l (0 i (9] (3.11)
2[ ZVW“”N [ixs, =] + (1 ilPWX,H —x)—u?+1<n)2]5
7 p
+Z<—ZPN<X =8 - ul (8]

Xes

12



Note that, by the desired Lipschitz continuity of ¢ in u and that |S| = 4 is finite,

N
1 i - -
‘N ZPN(Xt]-‘rl =X) _/’L?-H(x)}
Jj=1

1 - ~ -
= ‘N Z [ZQ(L X,Miy»a(t,xaﬂg);x)l{@=x} + Q(tax’ /’Lj'c'vaa([’x7 Mg),x)l{xl=x}i|
xeS j#i

=Ygl x 0 ()|

x€S

N
1 - -
=< ‘ﬁ § E Q(t,X’Mév»a(f,x,ﬂg)m)l{xj=x}— E Q(I,X,M,Q(I,X,M);X)M(X)‘
xeSj=1 x€S

1 - ~ -
+N Z ‘q(t,x,ug,a(t,x, /’L])'C’v)vx) —Q(Z,X, M];V’Ol(t,xa//«iy)m)“{xl—:x}
x€S

- - 1
<[ 2 atxong ot x i) g (6) = Y gt x, ot x, ) )| +

xX€S xX€S
1
= 3 [ @ = p@) + LMl @] + 1 = Cuow.
x€S

N C
Then, EF " [Wy (. 1%y 1)] < Wii + CrOn < CLON.
Step 2. We next prove (3.9) by induction. For any s = ¢,--- , T — 1, by Step 1 we have

N % 1
EP [W1(M§V+1,M‘§‘+1)\f’sx] = CL[Wl(IkIvV’M?) + —], PV -as.

VN
Then

- C
EPN [WI(M£V+1,//,?+1)] = ]EPN [EPN [WI(M£V+1aM?+1)‘XsN]] = CLEPN [Wl(ﬂév’li?)] + \/—LN

Since T is finite, by induction we obtain (3.9) immediately.
Step 3. We now prove (3.10). Denote

ks := Wi (]P’N o(XH™ P! oXs_l) where P! = PHS¥E

13



Thenx; = 0,and fors =¢,---, T — 1,

k41 = ) [PV (X = %) — P (Xyp1 = H)]

XeS
N ; - ; - i - -
=) ‘EP lq(s. X}t a(s. X3, 1 ): )] —EF [q(s,Xs,M?,a(S»Xs,M?):X)]’
Xe€S
N ; - ; - N ; - ; -
= 3 [EP" [as X2 pd s, X2 ) 9] — EF g s, XE i s, XD 0 9|
XeS
N ; - ; - i - -
+> |1EP [q(s, X1, u2, a(s, X, n2); %)] —EF [q(s,Xs,u?,a(s,Xs,u?);x)H
xXesS
N - - . .
< CLEP [ u)]+ Y aGsox, g als,x, 1) )PV (XS = x) =PI (Xy = x)]
Xx,X€S
< CLON + Ks.,
where the last inequality thanks to (3.9). Now by induction one can easily prove (3.10). |

3.3 Convergence of the set values

We first study the convergence of the cost functions. Recall the 6y in (3.9) and the functions v in
N,L .
(2.5) and v; ™ in (3.6).

Theorem 3.5 Let Assumption 2.2 (ii) and (iii) hold. For any L > 0, there exists a modulus of
continuity function py,, which depends only on T,d, Ly, Co, p, and L such that, for any t € T,
uY € Py (S), € Po(S), and any &, & € ALy i =1, N,

state’
it %, (o)) = T oo xi, @)+ o]V F @ R e) — o6 x)| < pL(On). (B12)

Proof Clearly the uniform estimates for J implies that for v, so we shall only prove the former
one. Recall (3.4), (2.5), and the notations PV, P! in the proof of Theorem 3.4. Then

T-1
Ji(t, %, (@, @)i) — J(l,u,a;xi,&)’ <Ir+ > I, where

s=t
I = [EP" [G(XF. 1)) - EP'[G (X, )]

N ; - ; i -
Is:= \EP [F(s. X5 as. X5 u))] - EF [F(s,Xs,u‘s",a(s,XsM‘))](, s<T.

’

Note that, for s < T', by (3.10),

N . - . N . - .
I, < ‘]EP [F(s, X1 1N acs, X1 uNy)] - EP [F(s,X;,u‘;,a(s,X;,u?))]\
+[BP" [F (s, XE g @G, XE )]~ EF [Fs, X 1. 865, X 1))

EP" [p(CoWi(ul )]+ Y [F(sox. u.@s.x, u)| [PV (XI = x) = P (X, = )|

xX€S

EPN[P(CLWl(Mév,M?))] + CLON.

IA

IA
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Similarly we have the estimate for /7, and thus

T
Ji(t, %, (. @);) = J (@, u,a;xi,d)) < S EF [p(CoWi(ud . u))] + CLon.

s=t

This, together with (3.9), implies (3.12) for some appropriately defined modulus of continuity func-
tion py.. |

Our main result of this section is the following convergence of the set values. Recall, for a
sequence of sets {EN }N>1, Nh_r)mOo En := ﬂ U En, li:mOo En = U ﬂ En.

n>1N>n N n>1N=>n

Theorem 3.6 Let Assumption 2.2 (ii), (iii) hold and //év € Pn(S) = u € Po(S). Then

E N,e,L . N,e,0
U Jim Vi @.ng) © Veare(t.p) € () lim Vi@ pg) (3.13)
e>0L>0 oo e>0 N—00
In particular, since lim Vf}’;ﬁ’f (t,.ud) c U lim ngt’eL (t, uk), actually equalities hold.
N—o0 * L>0N_N” *

Note that X € Sév obviously depends on N, so more rigorously we should write X"V in the above
statements. For notational simplicity we omit this N here. We also remark that at above we are not
able to switch the order of limy _, o, and (Me>0 UL >0 in the left side, or the order of limy,_, ., and
(e>o in the right side. N

Proof (i) We first prove the right inclusion in (3.13). Fix ¢ € Vgare(t, ), € > 0, and set
1 := 5. Note that Asrqre = A9 By (2.14), there exists a* € M:},,. (1, 1) such that ||¢ —

State*

J(t, o, a*) oo < e1.Recall (2.13), we have
J(t, o x,a®) <v(u®;t,x) 4+ e, forallx €S.
For any o € A2, ,,, = Astare, by Theorem 3.5 we have

Ji(t, X, a®) < J(t, w, o5 xi,0%) + po(On)
< o(u® it.x) + &1 + po(Oy) < v,N’L(t,?c,a*) + &1+ 2po(On).

Choose N large enough such that po(On) < %, then J; (1, X, a*) < viN’L(t, X,a*)+ . This implies
that «* € Mgo(t, ug). Moreover,

||<,0—JN(I,-,M15C»V,06*)IIOO < e +sup |Ji(t, X, ") = J(t, poo™ixi 0)
]

IA

€
e+ po(y) <e1+ 7 =<e
Then ¢ € Vggft’g (t, ,u){cv ) for all N large enough. That is, ¢ € limy_, Vj;’;;’f (t, ,u){cv
¢ € Vgzazre(t, n) and € > 0 are arbitrary, we obtain the right inclusion in (3.13).

(if) We next show the left inclusion in (3.13). Fix ¢ € ﬂ U N@Oo Vs’,V;;’eL (t, [LI)-C»V ) and € > 0.
e>0L>0

Then, for &1 := § > 0, there exist L > 0 and an infinite sequence {Ny}x>1 such that ¢ €

). Since
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Ng,e1,Le

yNkerLe ug") for all k > 1. Recall (3.8), for each k > 1 there exists a¥ € M,<: 51 (¢, Miyk)

such that ||[o—J N (¢, -, ;Lgk,ak)ﬂoo < &1. By Definition 3.2, we have J; (1, ¥, ) < v{v"’Lg(t,fc,ozk)—i-
&1. Similar to (i), by Theorem 3.5 we have

k k
J(t, 0% i, oF) < v inxi) + 61 + 200, (On,) < v(u® i1, x;) + €,

for k large enough. That is, ¥ € ME, 41e(t, 0). Similar to (i) again, for k large enough we
have ||@ — J(t, . a®:-,0%)|loo < &. Then ¢ € V& are(t. ). Since € > 0 is arbitrary, we obtain
@ € Vgare(t, 1), and hence derive the left inclusion in (3.13). |

Remark 3.7 (i) From Theorem 3.6 (i) we see that, for any a* € M2 ,,,(t, 1), we have a* €

Mﬁ;ft’g(t, /,L)].CY) when N is large enough. Moreover, by (3.9) we have the desired estimate for the

approximate equilibrium measure EP [W1 (/,Lév, ,ug‘*)] < CpOy. This verifies the standard
result in the literature that an approximate MFE is an approximate equilibrium of the N -player
game.

(ii) From Theorem 3.6 (ii) we see that, for any of € Mﬁﬁ}%’Ls(l,ug"), we have o €
ME,41e(t, 1) when k is large enough, and we again have the estimate for the approximate equi-

% ok
librium measure E®"* [Wl (;Lﬁvk , ;L‘S"k)] < CLON,. This is in the spirit that any limit point of the
N -player equilibrium measures is an MFE measure.

Remark 3.8 (i) We should point out that the key to obtain the convergence here is to consider
homogeneous equilibria for the N -player games. If we use heterogeneous equilibria for the N -
player games, it turns out that we will have the desired convergence when we consider relaxed
controls for the MFG, as we will do in the next two sections.

(ii) Another feature of our convergence result is the uniform Lipschitz continuity requirement
on the admissible controls. Indeed, the left inclusion in (3.13) would fail in general if we replace
U Jim Vg (ud)ywieh () Tim V3w orwith (1) Tim Vg, (t. ), where
e>0L>0 e>0 >0
Vf;’f;:o is defined in Remark (3.3) and ngte is defined similarly, by requiring o*,& : T x S x
P(S) — A in (3.6) to be measurable only. See Example 7.2 below. We refer to [32, 33, 22] for
some related convergence analysis without such regularity requirement.

(iii) We note that the above regularity requirement on the admissible controls is also crucial
for numerical computations of set values, as well as for practical implementation of the equilibria,
although these issues are not studied in the present paper.

4 Mean field games on finite space with relaxed controls

In this section we study MFG with relaxed controls, or say mixed strategies. Besides its independent
interest, our main motivation is to characterize the limit of N-player games with heterogeneous
equilibria. We shall still consider the finite space in Section 2, however, for the purpose of generality
in this section we consider path dependent setting.

4.1 The relaxed set value with path dependent controls

We start with some notations for the path dependent setting. For X = (X;)o<s<7 € X, denote by
Xiae = (X0, , Xy, X¢, -+, X¢) the path stopping at f and X; := {xsr. : x € X} C X. Forx,x € X,
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we say X =; X if X;n. = Xsa.. Denote X% := {X € X : & =; x} and X}* := X*"* N Xj, fors > 1.
Introduce the concatenation x @; X € X by

(X ®: X)s := Xslgs<r) + Xsls>ry,  and (X By x)s 1= Xslfs<ry + X1ggoqy, X €S.
For each t € T, let #(X;) denote the set of probability measures on (£2, 37tX ), equipped with
Wip.v) = ) [u®) —v®)| Vv e LX),
xeX;

and Py (X;) the subset of u € P (X;) with full support X,;. Again this is just for convenience of
presentation. For a measure i € £ (X) = £(X7), denote psn. := o X; 1 € £(X;). We remark
that, by abusing the notation w, here ;. denote the joint law of the stopped process Xy ., while in
Section 2 {u.} denote the family of marginal laws.

For a path dependent function ¢ on T x X x £ (X), we say ¢ is adapted if ¢(¢,x, u) =
o(t, X¢ a-, e ). Throughout this section, all the path dependent functions are required to be adapted.
In particular, the data of the game g : T XXX P(X)xA XS — (0,1), F : TxXxP(X)xA - R,
and G : X x P(X) — R are path dependent with ¢, F' adapted. By adapting to the path dependent
setting, we shall still assume Assumption 2.2.

Let ;.14 denote the set of path dependent adapted relaxed controls y : T x X — P (A).
Givent € T, u € P(Xy), Y € Ayelax, and X € Xz, X € XUX, 7 € A, o145, We introduce:

PoY o Xib = p, PORY (Xoqq = XX =5 x) = f q(s.x. u” . a: H)y(s. x:da);
A
where ul. :=P:*YoXx 1 s>t

]plw;t,x,?(x = x) =1, ]P’My;t’x’?(Xs—l—l = XX = %) = / q(s. %, 1Y, a; %)y (s, X; da):
A

i T—1
159 =B 6w + 1 [ Fexw wpe x.da)x =]
r=s A

J(@t, oy x,p) = J(W;t,x,7), v(u’;s,X) = jgnf J(u: s, X, 7).
YE€Mrelax

4.1

Definition 4.1 (i) For anyt € T, u € Po(Xy), and & > 0, let M7, (I, ) denote the set of
relaxed e-MFE y* € A, o145 such that

T,y %,y <o’ ;6,x) +e,  forallx X, 4.2)

(ii) The relaxed set value of the MFG at (t, |4) is defined as:

Vrelax(tvﬂ) = m felax(hlu)’ where ”(p”XZ .= Sup |(p(X)|, and 4.3)

£>0 xeX;
3 — 0 . . * € *, *
Fotax (1) = {0 € LYK R) 1 3y € Migpg (1) st llp = (b o y™s .y ) I, <.

Similarly, given Tp and ¥ : X7, x £ (X7,) — R, as in (2.8) define

To—1
~ Vit x.y ~
J(To, 93, . y;x,7) = P V[W(XTkoM?M.)JFZAF(S’X’“V’G)V(S’X"{“)]’ 44
s=t
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and let M?

relax

(To, ¥; t, ) denote the set of y* € A, 745 such that, Vx € X,

J(To, ¥t 1,y %, 9™) <o(T,y; nVss,x) ;= inf  J(To, ¥t 1, y™ X, 7) +e.

YE€Hrelax
Note that the tower property in (2.10) remains true for relaxed controls:
J(t. . yixy) = J(To. ¥it, . yi X, y),  where ¢ (y,v) := J(To.v.y:y. 7).
The DPP for V,.,;, takes the following form.

Theorem 4.2 Under Assumption 2.2 (i), foranyt € T, Ty € Ty, and p € Po(Xy),

Vyelax(t. 1) = ) {(p e L'X;R) : o — J(To, ¥it, . v™5 v )lIx, <¢
e>0

for some ¥ € LO(X1, x Po(X1,):R) and y* € Ayerqy such that
W("M);'o/\-) € rgelax(TO’l'L);b/\-)’ )/* € Mfelax(TO’ w;t’/’b)}‘

4.5)

(4.6)

“.7)

Proof We shall follow the arguments in Theorem 2.4, in particular, we shall extend Proposition

2.3. Let @’,elax (. 1) = eso0 erlax (¢, ;) denote the right side of (4.7).

(i) We first prove V,etax(t, W) C Vyorax(t, ). Fix ¢ € Vyetax(t, ), e > 0, and set &1 :

Since ¢ € V*!

relax

(t, ), then

e — J(To, Vit u,y™; - y")x, <e1 for some desirable ¥, y* as in (4.7).

(To, u}%:/\_), there exists 7* € MZ!, (T, “)7/":/\-) such that

relax

Since ¥ (-, M;ZA_) %

relax

1 sty ) = T (To. i 75 7 g, < 1.

As in (2.2) denote P* := y* @1, V" 1= ¥ Ls<1y + 7 Lis>To) € Arelax- Then, for any x € X,

and y € A, .14y, similarly to Proposition 2.3 (i) we have

J(t, pw, P*5x,p)

. To—1
Yoiuxy[ * ~ *
=EP" I (To nfy e 7 Xmpne v) + ) /AF(S’X’MY ’a)Y(S’X’da)]
L s=t
To—1
> IE]P’“V*;t,x.y S

N To—1
Youxy [ * *
> E]PM Y W(XTO/\-, /‘L}I’wo/\') + Z /A F(S’X’ /"Ly ’a)J/(S’X’ da)] _281
- s=t

= J(To, Vit pu,y*;x,y) —2e1 > J(To, ¥ t, 10, y™; X, y*) — 3e1
To—1

Y i xy* * *
= ]EPM o I:w(XTO/\'v /’ng()/\-) + Z A F(s’ X’ My ' a)y*(s, X’ da)] N 381
s=t

To—1
Xy

> EP”
=Jt, w, P x,9%) —dey = J(@t, 1, 7" x, 7)) — €.
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J(To,M)}M,, 75 X1 77) + Z /AF(S, X, 1, a)y(s, X, da)] — &1
B s=t

[J(TO,MJ%O,\.,?*;XTO/\-,?*)+ Z AF(S,X,MV*,a)y*(s,X,da)]—481
s=t



That is, p* € M2 , (¢, u). Moreover, note that, by (4.6),

relax
lo —J(t, 1, 7" 79)x, <e1 + I (To. ¥t y™ s y™) = J(t, 1, 77579 lIx,

LARTROT * * - -
= g1 + sup ’EPM y [W(XTOA-’M)}O/\.) - J(TO,M’]/WO/\,, 7% XTon-s y*)]) <2 <e.

xeX;

Then ¢ € V(¢ ). Since & > 0 is arbitrary, we obtain ¢ € V145 (7, it).
(i) We now prove the opposite inclusion. Fix ¢ € Vrelax (t,u)and e > 0. Letey > Obe a

small number which will be specified later. Since ¢ € V otax(Es 1), then

lo—J(@. w. ¥y ¥y")lx, <& forsomey™ e M2 (1. 1)
Introduce ¥ (y, v) := J(To, v, y*;y, y*) and recall (4.6). Then

lo — J(To, ¥it, 1,y vHlx, = lex) —J (@ pn, y™;x, vH)lx, < €2

Moreover, since y* € M2, (t, 1), for any y € A,.14x and x € X;, we have

relax

J(To. yrit o,y %, y™) = J(t, . y™:x, y")
<Jt, 1,y X,y @1y v + 62 = J(To, Vi1, 1, y*: X, y) + €2.

This implies that y* € M?2, (To, ¥;t, ju). We claim further that

relax
* C *
V) € VSR (To. i ). @$)

for some constant C > 1. Then by (4.7) we see that ¢ € Vrifflx (t,w) C V2, (&, w) by setting
&y < % Since ¢ > 0 is arbitrary, we obtain ¢ € @,elax(t, Ww.
To see (4.8), recalling (4.1), for any y € oA, .14 We have

*
Y oirxoy*

My*;t,x.)/* * 12
E]P I:J(TO’/JL)Y/"O/\" V*;XT()/\-9 V*)] _E]P

= J(t,,lL, )/*;X, V*) - J(f,,b(/, )/*;X, V* @To V) = é&.

[J(To, Wrons V™5 XTon V)]

Then, by taking infimum over y € A4y, it follows from the standard control theory that
EPMV X,V |:J(T(), M;:/\., y*’ XTO/\o, y*)] < ]E]P’My XY I:U(My*’ TO’ XTOA.)] n &, Vx € Xt.

On the other hand, it is obvious that v(u"; Ty, X) < J(T(),/L)T’;A', y*ix,y*) for all X € Xr,.
Moreover, since ¢ > ¢y, clearly P”y*;t”"y*(X =71, X) > chO_t, for any X € Xth Thus,
0 =< J(TO,[L;OA.,)/*;)Z,)/*)—U(MV ;TOsi)
y*lt.x, * * *
< CEFT Y I:[J(TO’M}Y/"Q/\" Y5 Xroav") —v(u? : To, XToA-)]l{X=roi}]
y*:t,x, * * *
< CEFP" "V I:J(TOaM)ylwo/\.,)/*;XTo/\-,J/*) —v(u” ;To,XTOA-)] < Ce,

Cep

relax

where C = c,t]_TO. This implies that y* € M (To, /ﬁ}: A.)- Then (4.8) follows directly from

W(" /’L;/"O/\.) = J(TO’ ’M;O/\" y*’ K y*)’ and hence (S vrelax([» ,LL) u
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Remark 4.3 Consider the setting that q, F, G are state dependent, as in Section 2. There is a very
subtle issue between state dependence and path dependence of the controls.

(i) For a standard non-zero sum game problems where the players may have different cost func-
tions F;, Gy, if one uses state dependent controls, in general the set value does not satisfy DPP. See
a counterexample in [24]. However, with path dependent controls the set value of the game satisfies
the DPP.

(ii) In Section 2, since all players have the same cost function, as we saw the set value with state
dependent controls satisfies DPP. If we consider path dependent controls a € Apgqp, the set value
will also satisfy DPP. However, the set values in these two settings are in general not equal, see
Example 7.1 in Appendix for a counterexample.

(iii) For relaxed controls, again restricting to state dependent q, F, G, it turns out that state
dependent and path dependent controls lead to the same set value, see Theorem 7.6 in Appendix.
The main reason is that the convex combination of relaxed controls remains a relaxed control, while
the controls o in Section 2 does not share this property.

4.2 An alternative formulation of the relaxed mean field game

In this subsection we provide an alternative formulation for the MFG with relaxed controls. This
new formulation is motivated from the heterogenous controls for the N -player games, and thus is
crucial for the convergence result in the next section.

Let 4,4, denote the set of adapted path dependent controls o : T x X — A, and for each

t €T, ‘A’;ath = {(a(t,").--.a(T —1,7)) : & € shpgep}. Denote E; := P(X; x A;ath)’ and for

each A € E;, define recursively: for s > 7, x € X;, and X € X"%,
s—1
Hin () 1= AR AL ) s () = /A o [Taexxt a0 %) A da). (49)
path r=t

Here, noting that o € A;mh can be equivalently expressed as {a(s, %) : 1 <s < T —1,% € X,
we are using the following interpretation on do: for any ¢ : A; an — R,

T—1
/, p(a)da = / / e({a(s.0}) [ [] dets.®. (4.10)
'A’path A A s=t iEXé’x
Next, for u € Py(Xy), denote E;(u) :={A € E; : ,uf\,\, = u}. Moreover, recall (4.1),
J(t, A x,a) == J(,uA;t,x,oz), v(t, Asx) = v(,uA;t,x), x € X;,a € A;ath. 4.11)

To simplify the notations, we introduce:

s—1
Oi(iuyi% @) = [ [ ar % pa(r. )i %r41). (4.12)
r=t
In particular, Q% ({it.}; X, @) = 1. Then we have, for any X € X"*,

(%) = / QMR A da), PRUY(X = %) = 0L(ntike).  (413)

path
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Definition 4.4 Foranyt € T, u € $o(X;), and ¢ > 0, we call A* € E,(u) a global e-MFE at
(¢, ), denoted as N* € Mzrlobal(t’ W), if

/ [J(t, A*:x,a) —v(t, A*;x)|A*(x,da) <&, VxeX;. (4.14)
t

path

Note that the above « is global in time, so we call A* a global equilibrium. Moreover, since there are

infinitely many o € A;mh,ltls hard to require J (¢, A*;x, ) —v(t, A*;x) < eforeach € "A"tazh’

we thus use the above IL!-type of optimality condition. For the x part, however, since there are only
finitely many x and each of them has positive probability, we may require the optimality for each x.
The main result of this subsection is the following equivalence result.

Theorem 4.5 Foranyt € T and pu € $o(X;), we have

Vietax(t, 1) = global(t W) = ﬂ lobal(t W), where
£>0 4.15)

Ve oba (- 1) == {<P € LOX¢,R) 1 3N € Mg pp (1, 10) st llo —v(t, A% ) Ix, < 8}-

We shall prove the mutual inclusion of the two sides separately. First, given (¢, A), we construct
a relaxed control as follows: forany t € T,x € Xy, and s > ¢,X € va’x,

y (s, %, da) := Q5 (1™ %; )8 (s 1) (da) A(x, dav). (4.16)

S/\ (X) path
On the opposite direction, givent € T, u € Po(X;), ¥ € Arelax, recalling (4.10) we construct

T-1
A (xda) = pu®) [] [] v6.%da@s.%). VxeXiaecAl,,. 4.17)

sS=t NEX[X

In particular, the following calculation implies AY € E;(u):

T-1 T—1
N & Ap) = w® [T [T vex8)=p@ ] [T 1=rm.

S=I gexiX S=I gexL*

Lemma 4.6 Foranyt € T, u € Po(Xy), and A € E;(1), y € Arejax, we have /LVA = u® and

u?” = w¥. Moreover,

J(@, u, y X, Y A= [ J(t A;x,a)A(x,da), VxeX;. (4.18)

p(x)

A
Proof We first prove ). = Mﬁ/\, by induction. The case s = ¢ follows from the definitions.
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Assume it holds forall r <s. Fors 4+ 1 and X € X;’_’ﬁl, by Fubini Theorem we have

A
y ~
I (%)
—(:,Il)j\ :/ CI(S,i,MVA,a;isH)VA(s,i,da)
M n-(Xsa-) A
- AL 1 B
=/ q(s, X 1V aiXsp) ——— | 0L (A% )8y (s 5 (da) A(x, dav)
A Hgn.(X) AL uih
1 < A N t, A~
= — q(s, X, u™, a(s,X); Xs+1) Qg (™ X ) A(X, dox)
Msa-(X) A in
A ~
! < His+na®
= A o Qt+1(MA§X§05)A(X, do) = ————
Hé\/\'(x) Aparn ’ Méx/v(x)

A
Then ,u{s fOA ué 1A and we complete the induction argument.

We next prove /,Lé\/i, = u¥ . by induction. Again the case s = ¢ is obvious. Assume it holds for
all r < 5. Now for s, recalling (4.10) we have

s—1 r-1
o) = /,,4, [[]a0-% 1 et 2:% 0] [k [] T] r(% da(r%)]

t
path r=t r=t iGXfix

s—1
= uO[[] [ a5 o Ry % o5 ¢

s—1 T-1
[IT TT rvoexa]x[IT IT re-xa)]
"= ReXN\E) r=S geXLX
s—1
= u(x)]_[/Aq(r,i,uy,a;i,Jrl)y(r,i,da)=M§A.(i).
r=t

We finally prove (4.18). For each s > ¢ and X € x5, by Fubini Theorem again we have

F ’i’ A?
/F(S,i,MA,a)VA(S,i,da)=/ w
A A X)) Jan,
1

pan (X) S

QL (U % )y (s 3) (da) A(x, dav)

F(s,% p2, a(s,%) Q5 (2 % ) A(x, da)

.
By (4.1) we have PA™ %7 (X = %) = M/fo()X) Thus
Tty ix p )

T—-1
= DIRLVOVENCED SIp SENCY W VAN )

~(x) zeX!x S=I geXi®

path xeXI.x

T-1
Y Y PRt (s R) 04t % ) | Ak, da).

s=t iGXf\-’X
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This implies (4.18) immediately. ]

Remark 4.7 We can actually show that y2) =y for all y € Ayeiax, see Appendix. However; it
is not clear that we would have A¥™) = A forall A € Bs(p).

Proof of Theorem 4.5. Since u € $o(X;) has full support, then ¢, := irg w(x) > 0.
XEN;

(i) We first prove Vgiopai(t.jt) C Vieerax(t,pt). Fix ¢ € Vgiopqi(t, ) and & > 0. Let
g1 > 0 be a small number which will be specified later. Since ¢ € V;;oba 1 (1, 1), there exists
A* € M?Iubal([’“) such that [|¢ — v(z, A*;-)||x, < 1. Set y* := y2". For any x € Xy, since
w" = uh", by (4.1), (4.11) we have v(u?"; 1, X, y*) = v(r, A*;X), and, by (4.18), (4.14),

1
J(t vy X y™) —v(t, AT x) = / [t A% x,0) — v(t, A% X)]A*(x, do) < - <,
p(x) Jat ¢

path M

provided &1 > 0 is small enough. This implies y* € M , (¢, ).

relax
Moreover, it is clear now that, for any x € X; and for a possibly smaller ¢,

&
[0 = Ty i x y )] S o1+ [ AT = Ty Xy S e+ <
w

Then g € V7, (¢, 1), and since € > 0 is arbitrary, we obtain ¢ € Vyjqx (7, ).

(ii) We next prove Vi1 (f, 1) C Vgiopai (t, ). FiX @ € Vygpqx(f, 1), & > 0, and set e := 5.
Since ¢ € erziax(t, W, tilere exi*sts y* e ‘Mfleax(t’ w) such that [ — J(t, w, y*;:-, v x, < €2
Set A* := AY", then u®" = u¥". Since y* € M2, (L, ), we have

lp(x) —v(t, A*;x)| = |p(x) — U(/Ly*;t,X)l <28 <g, VxeX,.

Moreover, note that, by (4.18) again,

/t [J(t, A*:x,0) —v(t, A*;x)|A*(x, da)

L ath 4.19)
= I, y™ixy") —v(t, ATix)] < p(x)e2 < &2 <&
This implies ¢ € V;lobal([’ ), and hence by the arbitrariness of &, ¢ € Vg opq1 (2, 11). |
5 The N -player game with heterogeneous equilibria
In this section we drop the requirement &' = --- = ™ for the N-player game, and show that the

corresponding set value converges to V,,;,,, Which in general is strictly larger than Vg;4:.. We
note that we shall still use the pure strategies, rather than mixed strategies, for the N -player game.
Moreover, since we used path dependent controls in Section 4, we shall also use path dependent
controls here.
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5.1 The N-player game
Let QV and X be as in Section 3, and denote

N
1 -
u%_ = ,u?")}m, where uf; = I E 8 € P(Xy), X = ', xM) e Xﬁv 6D
i=1

Similarly to (3.7), for the convenience of the presentation we introduce
Xé\f, = {i e XN : supp (uf;{) = Xt}, Py (Xy) = {uﬁvﬁ ‘X € Xé\{t}. (5.2)

We shall consider path dependent symmetric controls: AP = U L>0 A;)’aLt 5> Where

path °
A;’aL,h = {05 At T — 1 x X x P(X) —>A‘ « is adapted and

uniformly Lipschitz continuous in @ (under Wy) with Lipschitz constant L}.

Givent € T,x € X},,and@ = (a!,--- ,aV) € (A;;;fh)N, introduce, for s > ¢,

N
Pt,X,a()z =, ;() — 1’ Pt,x,a()?s_i_l — )-C>//|X' = )—(’/) — 1—[q(S,X/i,//LN,Oli(S,X/i,//LN);Xl{,),

i=1
T-1
Jit.%@) =EF G uN) + 3 Fs XN o (5, X ) (5.3)
s=t
o Ee @) = inf  Ji@,%a7 @), i=1,---,N.
geAll

Here (@, @) is the vector obtained by replacing o in @ with a.

Definition 5.1 For any ¢ > 0,L > 0, we say a € (:A;"ILth)N is an (e, L)-equilibrium of the N -

player game at (t,X), denoted as & € M}Ilve’fél;o (.X), if:

N
% [ x@) — v R a)] <. (5.4)

i=1

Here, since there are N players and we will send N — oo, similar to (4.14) we do not require the
optimality for each player. In fact, by (5.4) one can easily show that

1 - - - -
N‘{l =1,---,N: J,-(t,x,oz)—viN’L(t,X,a) > \/E}’ < Je. (5.5)

This is exactly the (/¢, 1/€)-equilibrium in [11].
We then define the set value of the N -player game with heterogeneous equilibria:

N 3\ N,e A N,e,L 3
Vhetero(l’x) T ﬂ Vhetero(l"x) T m U Vhetero(l"x)’
£>0 e>0L>0

where VoLl (1 3) .= {w eLOX,:R):3a € MYVSL (£,%) such that (5.6)

hetero hetero

max min |p(x) — vl-N’L(l,;i,&)} < 8}-
x€X; {i: xi =x}
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VN,&,L

heteros X) is to require ¢ satisfying

Remark 5.2 (i) An alternative definition of

max ‘go(xi) - viN’L(t,i,&)| = max max |e(x)— viN’L(t,;(,&)‘ <e. (5.7)
i=1, ,N XGX[ {l Xi =x}

Indeed, the convergence result Theorem 5.3 below remains true if we use (5.7). However, in general

it is possible that X' = x/ but viN’L (t,X,a) # U]{V,L (t,X, ). Then, by fixing N and sending & — 0,

under (5.7) we would have V}%tem(t, X) :=(e>0 V}i\;’fem(l, X) = 0.

(ii) In the homogeneous case, vl-N’L(t, X,0) = UJZ.V’L(Z,;(,&) whenever X} = x/, so we don’t
have this issue in (3.8).
(iii) Note that Mivi = ,uivi., if and only if X is a permutation of X', and one can easily verify

N,L > o N,L .
that v;”" (t,X,a) = vﬂ(i)(t, Xz(1)> " Xg(N))s (@r(1),*** » 0r())) for any permutation 7w on
{1,---, N}, . Then, similar to the homogenous case, V}f\; ’fe’fo(t, X) is invariant in ;Lff}( and we will

N,e,L

o ) N
denote isas 'V, ;" (1, Mt,i)'

The following convergence result of the set value is in the same spirit of Theorem 3.6.

Theorem 5.3 Let Assumption 2.2 hold and ;Lﬁv;( € Pn(Xy) = u € Po(Xy) under Wy. Then

- N,s,L N . N,e,0 N
m U ngnoo Vhez‘ero(t’l’Lt,SE) C Vretax(t, 1) C m lim Vhez‘ero(t’u“t,ii)’ (5.8)
N —o00
e>0L>0 e>0
. . : N.&,0 N T— uNe&L , N .
In particular, since Nh:moo v, ete orolls 1 t,i) C U Nh—r>noo Vhe:’ero(t, “t,i)’ actually equalities hold.
L>0

Unlike Theorem 3.6, here the N -player game and the MFG take different types of controls a
and y, respectively. The key for the convergence is the global formulation in Subsection 4.2 for
MFG. Indeed, givent € T,X € Xf)\{ ;anda € (At’L )N, the N -player game is naturally related to

path
the following AN € P(X, x AL ):
1 .
AN (x,da) = v Z 8o;(da), where I(x) :={i = 1,--- ,N :x' =x}, xeX,. (5.9
iel(x)

By the symmetry of the problem, there exists a function J, independent of 7, such that
Jit,x,a) = JNAN;1,x ), i=1,---,N. (5.10)

We shall use this and Theorem 4.5 to prove Theorem 5.3 in the rest of this section. We also make
the following obvious observation:

x| _
N =

Remark 5.4 (i) In this section we are using symmetric controls and we obtain the convergence
in Theorem 5.3. If we use full information controls o; (t, X ), as observed in [32] in terms of the
equilibrium measure, one may expect the limit set value will be strictly larger than V4. It will
be interesting to find an appropriate notion of MFE so that the corresponding MFG set value will
be equal to the above limit, in the sense of Theorem 5.3.

(ii) While the convergence in Theorem 5.3 is about set values, the proofs in the rest of this
section confirm the convergence of the approximate equilibria as well, exactly in the same manner
as in Remark 3.7.

AN (x, AL ) = /,Lf:;((x), vx € X;. (5.11)
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5.2 From N -player games to mean field games

In this subsection we prove the left inclusion in (5.8). Notice that the AN in (5.9) is defined on

,A);a .pp» Tather than ,A; ath = A;gt 5+ For this purpose, recall (4.12) and introduce

- 1 - -
v,A,,\,(X) = M?,];(X), vg\,(x) = Z va(vN;x,ai(-,-,vN)), x e X, xe X s>

i€l (5.12)

AN (x,da) := ﬁ((:))' > Sa(da), where  &(s,%) 1= ai(s. %, v™).
iel(x)

Then it is obvious that &; € A;mh and AN € E:(u). Moreover, when = ,uﬁvi,, by (4.13) and
(5.11) it is straightforward to verify by induction that M[_‘N =N,

Theorem 5.5 Let Assumption 2.2 (ii) hold. Then, for any L > 0, there exists a constant Cg,
depending only on T,d, Ly, and L such that, for any t € T, X € X(IXI, uw e PoXyp), a €

(A" L W.a e ALL and for the vN , AN defined in (5.12), we have

path path’
x@ @ A 1
EP"™ O Tw (N pB)] < Loy, 6y = WiV —. .
max  max_ [ W1 (tgn.r tsn. )] < CLON. On 1(ky 50 1) + N (5.13)
Proof Fix i and denote &; := o for j # i, and &; := &;. We first show that
PV N N CL N . EXCm:
kg =E [W1(us,\.,vs/\_)] < ﬁ, where PV .= pt%@7"@) (5.14)

Indeed, for s > ¢, by the conditional independence of {X 4+1/1<j<N under P¥, conditional on Fy,
it follows from the same arguments as in (3.11) that

PN [PV N N
ks+1 = E []Eﬂ [WI(M(S—H)/\JV(S—H)/\-)]]
C vl & .
= o+ Y EF HNZIPN(XJ =41 XIF) = vty ) ]
N X€X5+1 j=1
Note that,
1 . 1
— N "PVNXT = X|Fs) — — I{X_,-=Sx}q(s,x,vN,oej(s,x, V) Xs41)
N~ N~

N
=|5 Z o 2o [065.% 1N & 5. 1V %) — (.5 0V % vV ) x|

1 1
< CLWl(u?’A., wN )+ ~ = Cuks +
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where in the last inequality, the first term is due to the sum over all j # i. Then

C N
ks+1 < CpLks + —= +EF [ ZI{X/— 4 (s, X, v Lo (s, x, v ) Xs+1)

5

W x€Xs41 j=1
> Qé(vN;Xﬂj)q(s,x,vN,aj(s,x,vN);st)H
JEI(x¢A-)

C PN t N. 5

BRIV I P ‘N Zl{wax} > geVixa)]
x€X Jj=1 jeI(Xl‘/\-)

= Cuee + = A BP0 i 0 ol ]| = Cues + .

VN veX. VN

It is obvious that k; = 0. Then by 1nduct10n we obtain (5.14).
Next, denote kg := Wl(vs/\ ,us,\ ) For s > ¢, by (5.12), (4.13), and (4.12), we have

fst1= ., Y, ‘v(s—i-l)/\-(i)_M(s—l-l)/\-(i)'

x€X: geXX |

1 o v
=2 2 Iy 2 o) - |l;((:))| Y 0 (iR @)

x€Xs geX(y,  JEI® Jel()

=Y Y [§ X 100N ) - 04 (R 5 6]

x€X: geXX | JEI(x)

1 /’L(X) t AN . o2 -
N T I ‘j;(x) Q1 ’X’“J)]

ey Y2 ZWI(vM,/»MH{——%M 1]

x€X: xeXX Jjel(x) r=t

= CZKr +C Z |'utx(x) M(X)‘ = CZKr

xeX;

Obviously k; = W; (,u q,u) Then by induction we have sup &5 < CW;(u'- AFS ). This, together
t<s<T

with (5.14), implies (5.13) immediately. |

Theorem 5.6 For the setting in Theorem 5.5 and assuming further Assumption 2.2 (iii), there exists
a modulus of continuity function py,, depending on T, d, Ly, Co, p, L, s.t.

Ji(t, %@ @) — J(t, AN : %, (.,VN))‘ +[oVE@ R @) — oA x| < pL(By). (5.15)

N,e1,L

netera (s X) for some g1 > 0, then

Moreover, assume a € M

/ [J(z, l_XN;X,oz) —(t, /_\N;X)]/_\N(X, da) <e1 +2p1.0N), VxeX;. (5.16)
t

path

In particular, if &1 + 2pr (On) < &, then AN € Mglobal(t W)-
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Proof First, given Theorem 5.5, (5.15) follows from the arguments in Theorem 3.5. Then, for
a € M;lve’fe"rﬁ(t, X) and x € X;, by (5.4) we have
_ _ _ 1 _ _
N. N. N _ N. =. N.
/Z [, AV x,0) — v, A x)AY (x, da) = N Z [J(Z,A X, ) —vu(t, A ,x)]

path iel(x)

1 n ] - = [N N
=N ;) [\J(I,AN;x’,&,-) — Ji(t,%,@)| + [Ji (1, %, @) — o F (1. %, @)]
1 X

5 o AN i
oM@, % @) — vt ;t,X’)H

|
< pL(On) + &1+ pL(ON) = &1 + 2pL(ON). . ‘
Proof of Theorem 5.3: the left inclusion. @ We first fix an arbitrary function ¢ €
N,e,L €
V 5

Me=o0 UL>0mN—>oo hetera(["uf‘vi)’ e > 0, and set &1 := 2. Then there exists Lg > 0

Le
and and a sequence Ny — oo (possibly depending on ¢) such that ¢ € V}Z 1;’::0’ H, /Liv)i; ),

for all k > 1. Now choose k large enough so that 2p7,(0y,) < 1. By (5.6) there exists
a € M}]L’;;;_OLE (t,X) such that maxyex, min;ez(x) |@(X) — le’L(t,i,&)| < &1. By Theorem 5.6

we see that ANk € ‘Mzrlobal(t’ 1) and, by (5.15),

AN . N,.L, = - NL, = - AN
||‘P—U(,uA ;t,9)[lx, < max min [‘(p(x)—vi (t,x,a)| + |vi (t,x,oz)—v(MA ,t,x)|]
xeX;iel(x)

< e1+pL.(On) < e

Then ¢ € Vglobal (t, ;). Since € > 0 is arbitrary, by Theorem 4.5 we get ¢ € V.74 (t, 10). |

5.3 From mean field games to N -player games

We now turn to the right inclusion in (5.8). Fix7 € T,X € X(])\{t, uw e Po(Xy),and y € Ay pgy. Our

. oo t,0
goal is to construct a desired o € (Apa ;

AN is discrete, we need to discretize y first. We note that it is slightly easier to discretize y than a
general A € E;(u).

First, given ¢ > 0, there exists a partition A = UZ; oAk with ng depending on ¢ (and y) such
that, for some arbitrarily fixed ay € Ay, k =0,--- , ng,

h)N . However, since &, or equivalently the corresponding

y(s,X,A9) <&, Vs €Ty, xe Xy, and |a—ag|<eVaeAg, k=1,--- ng. (5.17)

Denote by A;’Zzh the subset of & € ‘A’;((z)th taking values in A; := {ay : k = 0,--- ,n.}. Define
ng
& “—
yo(s.x.da) := | y(s.x. A)ba, (da). (5.18)
k=0

& t,e £,0
Recall (4.17), we see that supp (A? (x,da)) = Apmh C Apmh

Next, recall (5.11) that N,uﬁvi(x) = |I(x)| is a positive integer for all x € X;. Let Af;( €
P(X; x A;Z .,) be a modification of A?" such that,

for all x € X;.

Afj(x, ‘A;;Zth) = u?’;(x) and NAS (X, o) is an integer; e
. Je 1 e V(x,o) e Xy x A
|At’;{(x,0l)—A (X’a)l S N+ |/_Lt’§(x)—/L(X)|,

bene (519)
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. t, . . . .
Note that, since Apj 18 finite, such a construction is easy.

,€

We now construct @ € (A;a ; h)N , which relies on y* and hence on ¢. Note that

Y INAS (@) = NAG (x. AT ) = Nupu(x) = 1)1,

t.e
(XEeAapath

and each NA‘; < (X ) is an integer. Let I(X) = U, 4r.e hl(x, «) be a partition of /(x) such that
s pat
[I(x, )] = NA‘;‘ - (%, ). We then set

o =a, ie€lxa), xa)eX;xA?

e (5.20)

Let AN be the one defined by (5.9) corresponding to this &. It is clear that AV = Ai .

Theorem 5.7 (i) Let Assumption 2.2 (ii) hold. Then there exists a constant C, depending only on

T,d,Lg, such that, foranyt € T, X € Xévt, nw e Po(Xy), v € Apelax, € > 0, and for the
1,0

a e (A;’Z ; h)N constructed above, we have, for the Oy in (5.13) and for any & € Ap’a o

rx@ 1t
max max ET
1<i<N t<s<T

Wl 1)) < Co + Cably, (521)

where Cy may depend on ¢ as well.
(ii) Assume further Assumption 2.2 (iii), then there exists a modulus of continuity function po,
depending only on T, d, Ly, Co, and p, such that,

Ji(t, %, @7, @) — J(u; z,x",&)| + [0, %, @) — v 1,x")| < po(Ce + Ceby). (5.22)

Moreover, assume y € ‘Mfelax(t’ W), then
1 N
5 S [Ji %) — v 01X @)] < e+ 2p0(Ce + Ceby).  ¥xeX,. (5.23)
i=1

N,2,0
hetero

In particular, this means that & € M (t,X) with & :== & + 2pg (Cs + CSQN).
Proof (i) We first show by induction that
ks = Wi(udn i) <Ce. s=t,--- T (5.24)

Indeed, it is obvious that k; = 0. For s > ¢, by (4.1), (5.17), and (5.18), we have

Ks+1 = Z |I'LJ(/S+1)/\.(X) - /'L%/SS_;,_I)A.(X)}

XEXS_i_l
= Y [ [axur oy da) - o) [ gtx w0y .x do)
A A
xeXs,x€S
& e
= Y [ -ui|+ Y / (s, % 17 @i ) —q(s.x, 17" agix) |y (5. x. da)
xeX;,xeS k=1"4k

+/ q(s,x,uy,a;x))/(s,x,da)—i—/ q(s,x,uyg,a;x)yg(s,x,da)
Ao

Ao

< Cks + Ce.
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Then by induction we have (5.24).
We next show by induction that, recalling (5.12),

ks 1= Wl(m,um)gcee,v, s=t,---,T (5.25)

Indeed, k; = W (;Lf’i,, w). For s > ¢, noting that o;; € A"° n C AP0

pat ;, and recalling from Lemma
4.6 that ™" = ¥, then by (5.12) and (4.13) that

pat

Ks4+1 = Wl( Vst1a- »M(s+1)A)

=X X \— Y Y eV~ [ 0l e de)

xeX; xeX’ oceeAt 5 zGI(x ) path

=2 2 \ 2 Ai,,;(mQéH(vN:i,a)—A”(x,a)Q;HW;i,a)]\

xeXy xeXt_,’_l aGApath

=Y Y Y [Mixe - A w0l 0V a)

X€X; ReX(Y | aeALs ),

+Ay (X, Ol)‘Qs+1(UN;i, Oé) — Q;+1(My8;)~(, Ol)‘]

Then, by (5.19) and noting that C, := |A;’Z ;| 1 independent of N, we have

fsr1 <0 > Y [GNQ§+1(vN;i,a)+CAV8(X,06)ZW1(V£VA.,MZZ.)]

xeXy ieX’ aEA;ath r=t

A

C.Oy +C ler.

r=t

This implies (5.25) immediately.

Finally, combining (5.24), (5.25), and (5.13), we obtain (5.21).

(ii) First, similar to (5.15), by (5.21) we have (5.22) following from the arguments in Theorem
3.5. Next, fory € M7, (¢, 1), by (4.19) we have AV € ‘Mglobal(t’ ). Then (5.23) follows from
similar arguments as those for (5.16). |

Proof of Theorem 5.3: the right inclusion. Fix ¢ € V,,,(¢t,u) and ¢ > 0. Lete; > 0
be a small number which will be spemﬁed later. There exists y € Mre Jax (> 1) such that |l¢ —
J(t, 1, y; y)lIx, < €1.Let y®! and & be constructed as above. By (5.23) we have

N

1 - - - -

N E [Ji(f,X,Ol) - UIN’O(f,X,Ol)] <é +2PO(C81 + CaIQN), vx € X;.
i=1

Choose €1 small enough such that 1 +2po(Cej + €1) < €. Then, for all N lar j\ge enough such that

1 N R N,() > o
On < g—;, we have 5 > i1, [Ji(t,x,a) —v; (t,x,a)] <e¢&. Thatis, @ € Vhetem(t Mg N ) for all

N large enough. Then, following the same arguments as those in the proof for the left inclusion, we
can easily get ¢ € Vhe’fe(r)o (z, uﬁvﬁ) for all N large enough, and thus ¢ € limy _, o, Vhe’fe(r)o( a)
Since ¢ > 0 is arbitrary, we get the desired inclusion.
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6 A continuous time model with controlled diffusions

In this section we study a continuous time model where the state process is a controlled diffusion
with closed loop drift controls. In this case the laws of the controlled state process are all equivalent.
The volatility control case involves mutually singular measures (corresponding to degenerate g in
the discrete setting) and is much more challenging. We shall leave that for future research. To ensure
the convergence, we consider state dependent homogeneous controls for the N -player games, as we
did in Section 3.

6.1 The mean field game and the dynamic programming principle

Let T > 0O be a fixed terminal time, (2, ¥ ,F = {¥;}o</<7.P) a filtered probability space where
Fo is atomless; B a d-dimensional Brownian motion; and the set A C R a Borel measurable
set. The state process X will also take values in R?. Its law lies in the space #> = P»(R%)
equipped with the 2-Wasserstein distance W,. We remark that in the finite state space case W and
W, are equivalent, while in continuous models they are not. In fact, at below we shall require W;-
regularity, which is stronger than the W,-regularity, and obtain Wj-convergence, which is weaker
than the W;-convergence. This is not surprising in the mean field literature, see, e.g. [38]. The
main advantage of the W;-distance is the following well known representation, see e.g. [13]: for
any 1, ji € P1(RY),

WaGu. ) = sup | [ ool = o] : ¢ € Cuip(®) s o) (D) < v =7}, ©.1)

Here Cp;p (R?) denote the set of uniformly Lipschitz continuous functions ¢ : R — R. Moreover,
for each (¢, ) € [0, T]x P», let L2(t, 1) denote the set of F;-measurable random variables £ whose
law (under P) £¢ = p.

We consider coefficients (b, ) : [0,T] x R? x £, x A — (R?,R) and g : R? x £, — R.
Throughout this section, the following assumptions will always be in force.

Assumption 6.1 (i) b, f, g are Borel measurable in t and bounded by Cy (for simplicity);
(ii) b, f, g are uniformly Lipschitz continuous in (x, ju, a) with a Lipschitz constant Lo, where
the Lipschitz continuity in | is under W7.

Let Acons denote the set of admissible controls « : [0, T] x R? — A which is measurable in
t and Lipschitz continuous in x, with the Lipschitz constant Ly possibly depending on «. Given
(t, ) €[0,T] x P, & € L2(t, W), and @ € Acont, consider the McKean-Vlasov SDE:

S
XA =g 4 / b(r, XP5% it a(r, XP5)dr + By — Br, = Ly (6.2)
. :

By the required Lipschitz continuity, the above SDE is wellposed, and it is obvious that u¥ = p
and u% does not depend on the choice of £ € L2(z, u). Then, when only the law is involved, by
abusing the notations we may also denote X 6% ag X112
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Next, for any x € RY and @ € Acont, We introduce

J([’I,L,Ol;x,&) = J(p,“;t,x,d), U(Ma;S,X) = ~ i{lf J(Ma;S,X,&),SZt, where
AE€Scont
- r o. ~ o 0
XHsxd / b, X[ 0w all, X T)dl + By — By, 1 > s, (6.3)
S

o r o. ~ o. ~
J(u%;s,x,@) :=IE[g(X# ’s’x’a,,u‘%)—i—/ S, XE55% u% ar, XF* ’S’x’o‘))dr].
N

Here we abuse the notations by using the same notations as in the discrete setting. Clearly
u(s,x) = J(u%s,x,a@) and v(s,x) := v(u%;s, x) satisfy the following linear PDE and stan-
dard HJB equation on [¢, T'] x R¥, respectively, with parameter ;%

dsu(s, x) + %tr (Oxxu(s,x)) + b(s, x, ug, @(s, x)) - dxu(s, x) + f(s.x, us, a(s,x)) = 0;
(s, x) + %tr (Oxxv(s,x)) + nf [b(s,x, 1§, a) - 9xv(s,x) + f(s,x, u¥,a)] =0; 6.4)
u(T,x) = v(T,x) = g(x, ug).
Definition 6.2 Fix (z, 1) € [0, T] x $». For any ¢ > 0, we say a* € Acon; is an e-MFE at (t, i),

denoted as a* € ME,,,(t, 1), if

/Rd [J(t, p,o® x,0%) — v(u“*;t,x)]u(dx) <e. (6.5)

Remark 6.3 Similar to (5.4) and (5.5), here we do not require a* to be optimal for every player x.
In fact, alternatively, we may replace (6.5) with

u{x ST o x,a®) —v(p® st x)| > 8} <e. (6.6)

The intuition is that, since there are infinitely many players, we shall tolerate that a small portion of
players may not be happy for the a*, as in [11], and their possible deviation from a* won’t change
the equilibrium measure ,u“* significantly. We note that, although (6.6) and (6.5) are not equivalent
for fixed ¢, they define the same set value in (6.8) below, and the proofs are slightly easier by using
(6.5).

However, if we require the e-optimality for -a.e. x, namely the probability in the left side of
(6.6) becomes 0, then the set value will be different and may not satisfy the DPP. Such difference
would disappear in the discrete model though.

To define the set value, we need the following simple but crucial regularity result, whose proof
is postponed to Appendix.

Lemma 6.4 Let Assumption 6.1 hold. There exists a constant C > 0, depending only on
T,d, Cy, Lo, such that, for any t, i, o, & and s > t,

[T @, s,x) — J(u*; @, 5. %) + [v(u®;s.x) —v(u*s.3)| <Clx — x|, Vx,x.  (6.7)
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We then define the set value of the mean field game:

Veont (t, 1) 1= m Veont(t, ), where

e>0

Veon:(t, ) i= {(p € CLip(]Rd) : there exists o™ € M2, (¢, 1) such that 6.8)
/ ‘(p(x) - J(t,u,a*;x,oz*)‘u(dx) < 8}.
R4

In particular, since J(¢, i, o*; x,a*) > v(u® :t,x), then by (6.7) and (6.5) we see that both
J(t, pw,a*; -, a*) and v(u“*;z,-) belong to Veens(t, ). Moreover, again due to (6.5), we may
replace the inequality in the last line of (6.8) with [ga }(p(x) —v(p®" 1, x)‘,u(dx) <e.

Similarly, given To and ¥ € Cpr;p (R?), we may define the functions J(To, ¥ 1, i, o; x, &),
J(To. ;s u%;s,x,a), v(To, ¥; u*; s, x), as well as the sets M¢,,,,(To. Vi t, ), Ve, (To, Vit 1),
Veont (To, ¥; t, i0) in the obvious sense. In particular, we have the following tower property:

J(@, w0 x,0) = J(To, ¥;t, w,o;x,6), where ¥(x):= J(To,u‘}‘b,a;x,d);
v(u¥:t,x) = v(To, ¥: n%: 1, x), where ¥ (x) := v(u%; Tp, x).

We now establish the DPP for V., (2, ).

(6.9)

Theorem 6.5 Let Assumption 6.1 hold. Forany 0 <t < Ty < T and pu € P, it holds

Veont(t, 1) = §7(:0nt(t7,Uv) = m @fom(t,ll), where

e>0

Vione (. 11) = {w € CLip®RY): /Rd lo(x) — J(To, ¥it, .o x,a®) | u(dx) <e, ~ (6.10)

for some (Y, a*) satisfying: ¥ € V., . (To, ;L‘%ﬂ;),a* e M:,,(To, ¥ t, ,u)}.

Proof (i) We first prove Vo (2, ) C Veon: (. w). Fix ¢ € Veons(t, 1), & > 0, and set e := 5.

Since ¢ € V.1, (¢, ), there exists a* € ML), , (¢, ) satisfying (6.8) for £1. Denote

Y (0) = J(To. pf 03, 0%, P(0) = v(u® s To, ).
By (6.9) we have J(To, ¥;t, u,a™; x,a*) = J(t, u,a™; x,«*) and thus
/ l(x) — J(To. ¥it, .o x, )| u(dx) < e <e.
R4
We shall show that ¢ € Vfont(To,u%:) and a* € MZ,,,(To, V¥:t, ). Then ¢ € V&, (¢, 1), and

therefore, since ¢ > 0 is arbitrary, we have ¢ € V(Z, Ww.
Step 1. In this step we show that

| T aix.at) =0 s Too o)l @0 = [ 00Tl (@) < e 6.0

Then o* € ME,,,(To, /L";Z), which, together with the regularity of v from Lemma 6.4, implies
immediately that ¥ € V£, (T, ,Uf;:).
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To see this, we recall (6.2) with £ € L2(z, ). Since a* € M_L,,(t, ), by (6.9) we have
£1 > ]E[J(t, fa* £ 0y —v(u® e, E)] = E[J(To, Yot ot £, 0) — u(To, ¥ u s, S)]
= E[J(To.yitpa™:£.07) = I (To it o™i 60) | = E[y (X)) = P (x50 |

Note that eth'g,a* = ,u‘%*, then this is exactly (6.11).
To 0

Step 2. It remains to show that «™ € ME,,,,(To, ¥;t, ). By the definition of v and its regularity
from Lemma 6.4, there exists @* € #Acons such that

J(To, ¥t p,a*;x,@*) < v(To,w;u“*;t,x) +e. VxeRY,

Then, denoting &* := a* &1, ¢™ € Acons, by (6.9) again we have

E[J(To, Yt e € o) —v(To. ¥ pu® i, %‘)]

< E[J(To, Vit w, ;€ a") — J(To, w;t,u,a*;é,d*)] + &
= ]E[J(t, w,a* E,a%) = J(t, ok, E,&*)] +eé1

<E[J( o5 0% — v i) | 4o e o =

This means o™ € M¢,,,(To, Y31, j1). 3

(i1) We next prove Veons(t, 1) C Veont (¢, ). Fix ¢ € Veon:(t, 1), € > 0, and set g1 :=
Since ¢ € ﬁ’fgn ((t, ), there exist (¥, a™) satisfying the desired properties in (6.10) for ¢;. In
particular, sinceA (VS Vfolnt(T(i, M‘;ﬂ;), there exists desired @* € M[L,(To, M%;) required in (6.8)
for 1. Denote &* := o™ @1, &* € Aconr and

FNTY

V(x) = J(To, u§y @5 %, &%) (%) = v(u®: To, x).
By (6.10),
E[\J(To,w;t,u,a*;é,a*) - J(To,lﬁ;t,u,a*;é,a*)\] (6.12)
= E[ |y (e 5 — g 5] = /R Y = I (o, i, 65, | @) < e
Then, since ¢ € \N’f;m (¢, w) with corresponding (v, «*), by (6.9) and (6.12) we have
E[ o) — It 1.6%:£.6M)|| < E[|0®) - J(To. vt pa*ig.a”)|] +e1 = 201 < e,

where £ € L2(¢, ). We claim further that @* € ME,,, (¢, 1). Then ¢ € VE (¢, 1), and thus
© € VYeons(t, i), since € > 0 is arbitrary.
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To see the claim, since a* € M_),,(To, ¥;t, 1), @* € ML, . (To, u‘;«:), by (6.9) we have

]E[J(t, G E Q) —u(u® e, E)]

— ]E[J(To, Vit € a®) —v(To, ¥ n® 1, E)]

< ]E[J(To, Yt o 6 o) —v(To, i n® it E)] + &1
< E[U(To, Vi@ 8) —v(Tou v n® it S)] +2¢

< sup E[J(To, it pa® E,6) — J(To Wit ju,a*; S,d)] + 261
&GACO}’![

=E[y (X7 — v (X)) + 261 <E[J (X)) — b (XE5%)] + 361 <1 + 361 =&

This means &* € ME,,,(t, 1), and hence completes the proof. |

Remark 6.6 (i) Our set value Veon:(t, |4) is defined for each (t, jv) with elements in Cpip R%),
instead of V(t, x, ) C R for each (t, x, ). This is consistent with (2.7) in the discrete model, and
is due to the fact that an e-MFE o™ in Definition 6.2 depends on (t, j1), but is common for all initial
states x. Indeed, if we define Veon:(t, x, 1) in an obvious manner, it will not satisfy the DPP.

(ii) The above observation is also consistent with the fact that the following master equation is
local in (¢, ), but non-local in x due to the term 0,V (t, X, |4):

1
8tV(t’x’ /-’L) + Etr(axxv) + H('xv /’L,axv)

1 (6.13)
+ / , [Etr Oz V(t, x, 0, X)) + 0p H(X, 1, BxV(t,)E,M))BMV(t,x,M,fc)]/A(dfc) =0.
R

Under appropriate conditions, in particular under certain monotonicity conditions, the above mas-
ter equation has a unique solution and we have Vi on:(t, ) = {V(t, )} is a singleton, where
V(t, n)(x) := V(t,x, n) is a function of x. In this way, we may also view (6.13) as a first order
ODE on the space C 2(]Rd) (the regularity in x is a lot easier to obtain):

AV, w) + H(w, V(t, M))l-i- M, V(t, 1), 0, V(E, 1) =0,
where (11, v()(x) = St (Dx0(x)) + H(x, 1, 00(1)), 6.14)
1
M, v(), 5C,))(x) = /Rd [Str GxD0x. ) + 3p H(F. . 90 (D) x, D) Ju(d ).

It could be interesting to explore master equations from this perspective as well.

6.2 Convergence of the N -player game

By enlarging the filtered probability space (2, ,F,P), if necessary, we let B!, --- , BN be inde-
pendent d -dimensional Brownian motions on it. Set 422, := Ur =L ., where, for each L > 0,

AL . denotes the set of admissible controls « : [0, T] x R¢ x £, — A such that

oo, x, ) —a(t, X, )| < Lalx — X[+ LWi (0, ).

Here the Lipschitz constant L, may depend on o, hence the Lipschitz continuity in x is not uniform
in . We emphasize that the Lipschitz continuity in p is under Wi, rather than W,, so that we can
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use the representation (6.1). Note that .o, = AL and by Remark 3.1 (i), all the results in the

cont>
previous subsection remain true if we replace Acon; With AZS ;.
Givent € [0,T], X = (x1,---,xy) € RN and @ = (o1, ,an) € (Acom , consider

- -

5 > ., s - > o —»—'. . .
Xghot = x; +/tb(” XPREE B o (r, XPEE 5 dr 4 BE— Bji =1, N;

Y 6
i N3 6.15)
Ji(t.%.@) = E|g(xXp gt + [ £ (s, XERE PR oy (5, XERE 2 d ),
t
o Ee % @) = inf Ji( X, @7, @)
ae%cont

In light of Lemma 6.4, the following regularity result is interesting in its own right. However,
since it will not be used for our main result, we postpone its proof to Appendix.

Proposition 6.7 Let Assumption 6.1 hold. For any L > 0, there exists a constant Cp, > 0, de-
pending only on T,d,Cy, Lo, and L, such that, for any (t,%) € [0,T] x RN, 3,5 € R?, and

a e (AL, )N, we have
[V (e, 78, R),8) — oV (n, (7 R),8) | < CLIR — &, i=1,---,N. (6.16)
Given o € ACLO,”, by viewing it as the homogeneous control (e, - - - , @), we may use the sim-

plified notations X X0 it ut”?’“, Ji(t,X,a), and v.N’L (¢, X, a) in the obvious sense.

Definition 6.8 (i) For (t,X) € [0,T] xRN, ¢ > 0, L > 0, we call o* € AL

cont @ homogeneous

g N,e,L
(¢, L)-equilibrium of the N -player game at (t,X), denoted as a* € Mgy, (t, %), if
1 N
NZ[Ji(t,)?,oe*)—v;V’L(t,i,a*)] <e. 6.17)
i=1

(ii) The set value for the N -player game is defined as:

VN (t.%) = ﬂ ont(t X) = ﬂ ]X;,L(Z X), where (6.18)
>0 e>0L>0

N
- - 1 -
vVelq 3) = {(p € CripR?) : 3a* € MYEE(1.%) st 5 > e — Ji(t. X a¥)] < s}.
i=1
We remark that, although Vj‘j,ff (¢, X) involves only the values {¢(x;)}1<i<n, for the conve-

nience of the convergence analysis we consider its elements as ¢ € Cr;p (]Rd).

Remark 6.9 (i) Recall (3.1). By the required symmetry, obviously there exist functions JN , vV
[0,T] x P x AL xR — R such that

Jl(t’-)_éva) = JN(I’I’LZ"V’Ol;xl)a U'IV,L(I’)_C)sO[) = UN’L([,M]_Y’O[;XI-)’ i = 1"" 7N~ (619)

Moreover, VY .(t,X) is invariant in /,L-> and thus can be denoted as VY, .(t, Je M.
(ii) The required inequalities in Deﬁmtlon 6.8 are equivalent to:

/Rd[JN - vN’L](t,Mg,a*;x)/Lg(dx) <e, /Rd [o(x) — JN(t,ug,a*;x)]ug(dx) <e.
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We now turn to the convergence, starting with the convergence of the equilibrium measures.
Recall the vector (o, &); introduced in (3.6).

Theorem 6.10 Let Assumption 6.1 hold. For any L > 0, there exists a constant Cy, > 0, depending
only on T,d, Cy, Lo, and L, such that, forany t € [0,T], ¥ € RN, u € P, a,& € AL, and
i=1,.,N,

sup IE[W1 (w5 @i Mg)] < CrON. (6.20)

t<s<T

N
1 _ - 1
where Oy = Wi(uY . p) + N"a3 )%+ N7' |73 = N > lxl

i=1

Proof Recall (6.15) and introduce, for j = 1,--- , N,

N
- J - .. . _— 1
X! =xj +/ b(r. X! u% a(r, X}, u®)dr + B/ — B}, il .= —ZSX;;
t N “ s
=1 6.21)
N
Xy =¢£ —|—[ b(r, Xp, u¥, a(r, Xr, u¥))dr + Bs — B;, where § € L2($0;uév).
t

Note that X!,--- , XV are independent. We proceed the rest of the proof in two steps.
Step 1. In this step we estimate IE[W1 ([Lﬁv , ;L?‘)]. First, by [38, Lemma 8.4] we have

- S
E[Wi(i,£5)] < CN™@3||X|2,
Next, fix an ¢ in (6.1) and let u = u, denote the solution to the following PDE on [z, s]:
1
0ru + St (Oxxu) + b(r, x, u a(r, x, u2)) - 0xu =0, u(s, x) = ¢(x). (6.22)

Applying Lemma 6.4 with a(r, x) := a(r,x, u¥) and f = 0, we see that u is uniformly Lipschitz
continuous in x, with a Lipschitz constant C independent of ¢ and L. Thus,

E[p(Xs) — o(X®)] = E[u(t,£) — u(1,£)] < CE[|E - &[].

Since %y is atomless, we may choose £, £ such that E[|E — €[] = W, (,uév, W), then (6.1) implies
241 (éCXS, uy) < Cwp (/L;CN, (). Put together, we have

.
E[Wl(ﬂﬁv,ﬂg)] = CWI(MZ)-C'V’H) +CN™@3|X|2 <COy, t<s=T. (6.23)
Step 2. We next estimate E[Wl (ug”?’(“’&)f T ] Denote «; 1= &, oj := «a for j # i, and

Bl = bs. X{ i (s X)L Al = b(s, Xy als. X{ pu$)). 1< <N
My =TS MY, M= exp (7 BLaB] =% J7 1B 2ar).
Then, by the Girsanov theorem we have

E[Wi(ue™ @ ] = E[MWiaY . ud)] = E[[Ms — IWi Y 1]+ E[W (Y 1)

N s ' '
= B[ [ Mplas] Wi w] +EDRGY. 9] 629
j=1 !
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By the martingale representation theorem, we have
N s )
W ) =BG ]+ Y [ Zias). (6.25)
j=1""
Note that X/ are independent. Consider the following linear PDE on [z, 5] x R4N .

ru(r,x') + = Ztr x/x/u(rx) —l—Zb(rx ;Ls,a(rx Ux)) - 8xlu(rx)—0
J 1 j=1

M(S )C) = Wl(Mx/v /~’Ls)

(6.26)

By standard BSDE theory, see e.g. [43, Chapter 5], we have Z; /= = dx; u(r, )2 L ;‘) where X}’ ¥
Xj+ B’ — B] Note that the terminal condition u (s, X) is Lipschitz continuous in x with Lipschitz

constant #;. Then, similarly to (6.22), by Lemma 6.4 we see that |[Z 7| < |0x; u| < C for some
constant C 1ndependent of « and L. Thus, by (6.24) and (6.25),

N s N s
N y S C :
E[Wh (ui ™ @D 0y — @l )| = SB[ / Mpl-zldr| = = Y E| / M, |Bf1dr]
j=1 t j=1 !
Note that |8'| < C and, for j # i, |,3,| < wy (Y ,,ur) Then, by (6.23),

E[ W (uf ™, 19| < B[Wa (2 u$)] + E f My|Bildr + / M, |B]|dr]

J#i
~N |« c C
<E[Wi(iy ,u$)] + v —ZE M Wi (i, ,Mr)dr] =—+Cry <Croy .1
Theorem 6.11 For the setting in Theor]em 6.1 0, we have
1
Ji(t, X, (o, @);) — J(t, w, o xi,Q Lz, a) —v(u%it,x;)| < CrLOy. (6.27)

Proof Fix i. First, by taking supremum over & € %, ,, the uniform estimate for J implies that
for v immediately. So it suffices to prove the former estimate.
For this purpose, recall (6.15) and denote

e SN er T e ~Y. 5 ~ e V)7
J; ([’ .;C', (a’&)i) = E]P’ I:g(X;:x,(Ol,Ol)z,l’ /“L%t") + / f(S, X;,X,(OC,OZ)Z ,l’ M?,a(& X;,x,(lx,ﬂl)t;l’ Mg))ds]
t

Then one can easily see that, by applying Theorem 6.10,
[ (t, %, (@, @);) — Ji (6, %, (@, @);)| < Co sup E[Wy(u5@Di 1] < Croy.  (6.28)

t<s<T
Next, denote
X; :=~xi+B£—B§s ﬂ_g\]l:N[Z]#lS tx(otol)l +8xl]9
Bs = b(&Xi’/Lg’&(SaXi’/La))’ My = exp(ft BrdB; — 5 ts |:8r|2dr)§

By i=bis, X5 i (s, XE i), My =exp ([7 BrdBE— 4 [ 1B, Pdr).
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By (6.3) and (6.15), it follows from the Girsanov theorem again that

Ji(t. . (. @) = It . xi. @)
~ . T ~
= [E[[#17 - Mr][g(x]. u$) + / f(s. Xb 18, a(s, XL, p)ds] || < CE[|Mr — Mr ],

(6.29)
Denote AMg := My — Mg, ABs := Bs — Bs. Then, since b is bounded,

BlaM.P) = E[( [ 1.5, — M,8,148)°] = 5[ [ 16, - w15, 17r]
§C/ E[[AM, 3] dr—l—CIE / ABy| dr]

~ 3
2

/\

~ 1
< /]E[|AM| dr+CIE/ 2|A,B,|2dr]

t

/t E[|AM, 2] dr—I—C [/ A,Br|dr)

< [E[|AM| Jdr + ¢y (E / W i uar )

1

| /\

/\

Nl—=

- / E[|AM,|*|dr +CL( f Wl(ui’f’(“’&)f,u‘;‘)dr])
t

< c/ E[|AM,|}dr +CL9
t

where the last inequality thanks to Theorem 6.10. Then, by the Grownwall inequality we obtain
1
E[|AM;|?] < CL62, and thus (6.29) implies

~ 1
Ji(t’)_é?(a’&)i) - J(Z»M’a;xi»&) = CLG;\‘I

This, together with (6.28), implies the estimate for J in (6.27) immediately. |

Theorem 6.12 Let Assumption 6.1 hold. Assume further that Nlim 41 (;L){CV , ) = 0, and there
—> 00

exists a constant C > 0 such that® ||X||» < C forall N. Then

U Jim VEoE@ n) € Veonet. ) € () lim V0 pu) (6.30)
s>0L20N_) e>0 N—00

, , . N,e,0 N N,e,L N ...
In particular, since th Vo (t, ps:) C U th Voom(t, W3 ), actually equalities hold.

Proof (i) We first prove the right inclusion in (6.30). Fix ¢ € Veous(f, 1), € > 0,and set 1 := 5.
By (6.8) and (6.5), there exists a* € M. (¢, u) such that

/ [J(t, o™ x, %) — v(,u“*;t,x)]u(dx) < e, / ‘(p(x) - J(t,u,oc*;x,oz*)‘u(dx) <e1.
R4 R4

®Note again that ¥ depends on N. Also, the conditions here are slightly weaker than Nlim W (,ug , ) =0.
—>00
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Recall Lemma 6.4 and note that ¢ € Cp;p (]Rd), then by (6.1) we have
/Rd [J(t, poo*x.a®) — v 0, 0) ud (dx) <1 + CWY . p),

/Rd o) — (0 @50, @) (dx) < 61 + CoWa (1 . o),

where C, may depend on the Lipschitz constant of ¢. Moreover, by (6.27) we have

N N
1 . - 1 x 1
v E [Ji(r, %, ") — viN’L(t,x,oz*)] =N E [J@, o™ xi 0™ —v(u® 11, x) |+ CLoy

i=1 i=1
. 1 1
= / [J(@t, .o x,0%) —v(u® ;t,x)]uév(dx) + Crly <e1+ CLOy:
R4

N N
1 . 1 1
§ 290 = St F, e < 2 Y M) = J (@ e xi, @) + Cuby

i=1 i=1
1 1
= /Rd lo(x) — J(z,u,a*;x,a*)\ug(dx) + CLOy <1+ CpL 40y

We emphasize again that ||X||2 < C is independent of N. Then, by choosing N large enough such
1 1
that 105 < &1, CL o0y < €1, we obtain

N N

1 - - 1 -

5 2[5 - vVl R a)] < ¥ Qe — St 3 e <.
i=1 i=1

VN,S,O

This implies that a* € MY50(1.%) and ¢ € VY50, ¥

X

), for all N large enough. That is,
g €limy o, VNe0(1 %) for any & > 0.
(ii) We next show the left inclusion in (6.30). Fix ¢ € m U @oo VCAOI’;;L (t. /L)?N ), e >0, and
e>0L>0
set &1 := 5. There exist L, > 0 and an infinite sequence { Ny }x>; such that ¢ € yNeenLe ,ug)

cont
for all k > 1. Recall (6.17) and (6.18), there exists a¥ € ALe ; such that

con
L L
N Yot % ok = oYt @, 7,09 ] < e N Y lo(xi) = Ji(1, %, @) < e

i=1 i=1
Note that L, is fixed, in particular it is independent of k. In light of Remark 3.1 (i) and denote
a* (s, x) = ok (s, x, ,u“k), then u&k = M“k. Similarly to (i), by (6.27) we have

k.. =k ok Nk 3
[J(z,,u,a px,a") —v(u ;t,x)]p,q (dx) <e1 + CLSGN ,
R X k
1
[Rd () = J(t, . & x, @) | (dx) < &1 + CL6} .
Then, by Lemma 6.4 and (6.1) we have
k.. ~k ak i Nk
LI @ x, @) = o (st ) [u(dx) < o1+ Cr Oy + CWL(RE", ),
R

1
L, o) = 085,89 u(d) = 61+ CLby, + Co el o).
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Now choose k large enough (possibly depending on & and ¢) such that

1 1
CL.Oy, + CWi(ul ) < &1, CL0f + CoWi(ul*, p) < er.

Then we have
/ [T, @ x, &) — v (1, 0)|udx) <&, / lo(x) — J(t, . @ x, &%) | p(dx) <e.
R4 R4

This implies that @ € MZ,,,(t, ;) and ¢ € V&, (¢, ). Since & > 0 is arbitrary, we obtain
® € Veont (2, ). u

7 Appendix

7.1 Some examples

In this subsection we first construct an example in discrete setting such that Vo C Vgzgre C Vg C
Vrelax with all the inclusions strict, where V,,;, are defined in an obvious way. In particular, Vo
is empty.

Example 7.1 Set T =2, S = {x, %}, A = (},2), and
1 _
q0,x,pn,a;:x) =q(0,x,u,a;x) = o g(l.x,p,a:x) =a, q(l,x,p,a:X)=1-a;
FO,x,u,a) =0, F(,x,u,a)= Fi(a) :=al[l —a], G(x,un) = ukx).

Then for any 1 € Po(S), we have V = {(y,y) : y € @’}forV = Vo. Vszate: Voarns Vrelax, and

. . 513 8
V0.0 =0 Vare©.p) = {55/,

N - 2 — (112

Vparn (0, ) 1= {&u(&) tAuE) +5: Ade {3, 2 5}} (7.1)

Va0, = o)+ 2n + 5+ a7 e [53])

Proof Since |S| = 2, for any p € $o(S) clearly it suffices to specify p(x).
(1) We first compute Vo (0, ). For any o, & € Aszare, it is straightforward to compute:

1 1
HY@) = ) w(x0)q (0, X0, 1, (0, x0):0) = ) | (x5 = 5
X0€S X0€S
1
pE@) = Y ufGeng(xn pf a(lx)in = 5 ) a(lx); (7.2)

X1€S X1€S

. ~ 1
P~ ’O’XO’O{(XI = &) = Q(O’XO’M,d(O’ xO);l) = 5
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Then

JO.p0ix0.8) = EFUUNG00.u9) + Y F Xe 600 X))
t=0,1

= /f; (x) + P00 [F1 @1, x1)]

= - Z a(l,x;) + = Z Fr(a(l,xy)). (7.3)

xleS XIGS

Given o, we see that inf J(O, w,a; x0,0) = ; lees a(l,xy) + g, and the minimum is achieved

when &(1,x1) = 3 3, Vx1 € S, which are not included in A. Thus Ms4s0(0, ) = @, and hence
Vo (0, n) = 0.
(i1) We next compute Visqs¢(0, ). Fix &€ > 0 small. By (2.13) and (7.3) it is clear that

1 2
of € M, ;.(0, ) if and only if > Z F1(a®(1,x1)) < 5 +e. (7.4)

X1€S

and in this case, for any xo € S, by (7.3) again we have

J(O, p,a®; xg,af) = Jo(a) := % Z Fi(a®(1,x1)), where Fi(a) := a + Fi(a) = a[2 —al.

X1 €S
In particular, this implies that V¢, (0, n) = {(y, y):ye smte(O /,L)} where
K\'A’sgtate(ow“) = {JO(as) af € Mgya16(0, M)}
. . 2
Recall again that 1n11; Fi(a) = 5 By (74), a® € M,4:0(0, 1) if and only if there exists a
ae

function y. : S — R such that Fy(a®(1,x1)) = 5 + xe(x1) forall x; € S, and

Xe(X), xe(X) >0, xe(x) + xe(x) < 2e. (7.5)

This implies that

6xe(x1)

1+ /1=36):(x1)

Note that Fj is strictly increasing for @ € A. Then, by (2.14) we have, for € > 0 small,

1 . 2 .
af(l,x1) = 3 4+ Je(xyp) or 3 Xe(x1), where y.(x1):=

4
state(o w) = U U(yi —&,yi +¢),

Xe i=1
1= 1 .1 I~ 1 .2
yii= E[Fl(g + xe(x)) + Fl(g + xs(f))], y2 = E[Fl(g + xe(x)) + F1(§ - Xs(f))],
) .1 Ir~ 2 )
y3 = E[Fl(g — xe(x)) + Fl(g - xs(f))], ya = E[Fl(g — xe(x)) + F1(§ - xs(f))],
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where the first union is over all y. satisfying (7.5). Note that 0 < y.(x), ye(X) < 2. Then by
(2.14) it is obvious that Vg6 (0, ) = {(y, y):y € @’sm,e(o, M)} and

. -1 1.~ .1 ~ 24 = 2 513 8
\Y% 0, ={F—,—F— F—’F‘}={"_’_}'
state (0, ) 1(3) 2[ 1(3)+ 1(3)] 1(3) 9 18 9
(iii) We now compute V,,;4(0, ). For any o, € oApqrp, we still have uf(x) = % and
PM“?OJO’&(XI =x)= %, for all xo € S. Moreover,

pS@) = Y wlx0)q(0, xo, . @(0, x0); x1)q (1, x1, 1§, (1, X0, X1); x)
X0,X1ES

:% Z w(xo)a(l, xo, x1);

X0,X1ES

J(0, b, a; o, &) = BP0 [G(Xz, 1S + F(1, X1, u%,a(1, Xo, Xl))]

= 1@ + B @, Xo. x|
= 3 no) kg Y wllfom) + 5 3 Al xo.x). 76)

Xo€S xX1€S x1 €S
Similarly to (7.4),
ceMt (0 'fdl'f1 Fi(af(1 <2 v S
o € My, (0.p0) ifandonlyif - > Fief( X0, X1)) < 5 +& Vxo €.
X1ES
Furthermore, by abusing the notation y., the above is equivalent to that there exists y; : SxS — A

such that, by denoting 7¢(xo. 1) := 17 «/61)(—83()66%6(;)0 =

X8(x07 xl) > O’ VxOs xl S S’ and X&‘(x()?l) + Xé‘(x()’f) 5 28’ on € S’
| 2,
a(1,x0,x1) = 3t He(xo0,x1) or 3~ He(xo0,x1).
Following the same arguments as in (ii), we can easily see that V,,;;(0, i) consists of pairs

(J(O, p,a*; x,0%), J(O, p.a*; X, a*)) forall a* : S? — {1, 2}. Note that Fi(3) = F1(3) = 2,

and % > xjes @ (1, Xo, x1) takes 3 possible values: % % % Then by (7.6) we have

— 2 — 112
J(O»M,a*§x0,a*) ZAI’LQ) +A/’L(f) + 57 where A’A € {g’ 5’ 5} (77)
Again this is independent of xg. Then V,,,5(0, 1) = {(y, y):y € @’pa,h (O, ,u)} and

il

In particular, we see that Vsrate (0, u) consists of the elements of @’pa,h(o, w) with A = A, and
Vpath(O, 1) = Vsraze (0, ) when p(x) = wu(x).

’ ’

W N

W | —
| =

~ _ 2 —
Vparn(0. 1) 1= Ap() +2p@® + 5 ATe|
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(iv) Finally we compute V,..7,x(0, ). FiX ¥, 7 € Ay erax, it is straightforward to compute:
1 1
pix) =Y ulxo) / 9(0, x0, . )y (0, X3 da) = ) | u(xo) x 5 = ;
X0€ES A X0€S
. 5 1
PITOXOT (X = x) =/ q(0. xo. . a:0)7(0, x0:da) = 3
A
i) = Y u(xo) /A2q(O,xO,M,ao;m)q(l,xl,M,al;z))/(O,xO;dao)J/(l,xo,xl;dal)

X0,X1ES

1
ZE Z M(XO)AaV(l,Xo,xl;da);

X0,X1ES

- Y:0.x0.7 -
JO, 1, y;x0,7) — EP* oV[G(Xz,/LJZ/)—i— E /AF(t,Xt,;L%/,a))/(Z,X;da)]
t=0,1

= b+ BP0 [ R@pa.xido)

1 - - 1 -
=5 ¥ o) [[ayiesida 3 Y [ B@iisenida.

X0,X1 €S X1E€S

Similarly to (7.4),

1 2
V"€ Moty (0) ifandonlyif — 3 / Fi(@)y*(1.x0. x1:da) < 5+, Yxo €S, (7.8)
A

X1E€S

and in this case, for any x¢ € S,

1 ~ ~ 1
JO. 1. y®ix0,v%) = 5 > M(xO)anJ/S(I,xo,xl;da)+5 > [AFl(a)ya(l,xo,xl;da)-(7.9)

X0,X1€S x1€8S
Let Q/\/A{relax denote the set of y* : S — C‘P({%, %}) and set

S 1, 12, 29 2

Jy") =z E M(Xo)[—)/ (x0,x15 =) + =y (x0, X1; —)} + - (7.10)
2x s 3 3 3 3 9

0,X1

We claim that, for any y* € M?_; (0, w), there exists p* € Mrelax such that

700117 x0.7%) = J(5°)| = C Ve (7.11)
On the other hand, for any y* € M,ela x> denote
€ . 1 1 e . 2 2 € . &€ &
Ay = (5, 5 + \/E], Ay = [g - \/E, 5), Az = A\(A7 U 43), (7.12)

and set Y% € A, 145 such that

1 1 2
ye(1, x0, x1;da) = —[V*(x(),xu Plag(@) + Y™ (x0, X1 g)lAg(a)]da-

2/¢

44



Note that Fl(a) < (% + \/E)(% —Je) = % + “/TE — ¢, ¥%(1, x0, x1; da)-a.s. Then it is clear that

ye e M Moreover, one can easily verify that

relax

\J(O, 1, v%: x0,v%) — J (7°)

<Z > wEo)y* (xo. X1 )‘[/Eada—— +%—£<C\/_

i=1 xo,X1€S

This, together with (7.11) and (4.3), implies that V,..7,,(0, u) = {(y y):y € Vrelax (0, /L)} and,
by denoting A := %lees [%y*(g, X1; %) + y*(x, x1; 3)] [% %] and similarly for A,

I

. . . ) 1
Vretax O 1) 1= {F ) 1 7" € Myetan} = A0 +Ip® + 5 AT els.

wll\)

It remains to prove (7.11). Let y¢ satisfies (7.8). Then, for any xo € S, we have

ez 5 2 [ A@ytsosido -5 =3 Z/( = DG~y (0, vsda)
X1€§
@G =@y xomida) = Vi —vOg 3 [ 140 x0.x1:da).
XZGS/ 33 1 XZGS/ 0. X1;
Thus

/ y*(1,x0,x1:da) < C+/e, Vxo,x1 €S.
A5

Recall (7.12) and set p¢ € Mrelax by:

e o yR(Lxo, x1: A7) ie 20 yo(Lixo,x1; 4%)
V (x()axl’ 3) L 2 £ k) V (x()?xl’ 3) L e .
Zi:l Ve(leO,xﬁAi) Zi:l VE(I,XO»XI,A,')

Then Fi(a) = %, 7¢(x0, x1; da)-a.s., and thus

‘J(O, . y%: x0.v%) — J (5°)

= Z Z M(X0)|/ ay®(1, Xo,xl,da)——y (%o,

i=1 Xg,x1€S

1 - - 2
5 Y uGo | ay*(1, 5o, x1:da) + |3 Z/Fl(a)ys(l,xo,xl;oza)—5
Ag X1E€ES A

X0,X1E€S

2
< C Y [y, Ko, x1; AF) — P°(Ro, 15 AF) | + C /e
i=1

1= Y2 y&(1, %o, x1; A
<C §1—1V(~x0x1 z)+ \/—_ \/_ +C\/E<C«/_
Zi:] Vs(l,XO,XIQAf) I_C\/_
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This proves (7.11). |

Our next example shows that the left inclusion in (3.13) fails if we remove the L-Lipschitz
continuity requirement, as mentioned in Remark 3.8 (ii). This justifies our uniform regularity re-
quirement on the admissible controls in order to have the desired convergence as in Theorem 3.6.
Recall VV¢ and V-6 in Remark 3.8 (ii).

Example 7.2 Let T,S, q be as in Example 7.1, and

=153l F=0. Gl =23 —5u). G =5 —3u.

Then, for any i € Po(S) and Y € Pn(S) with u — p, (0,0) is in ﬂ lim Vsj;]aifo(o, ,u{v)
X X N—o00 X
&€

and ﬂ ng)n Vs];]aie (0, ,Uév), but not in Vgzaze(0, ().
>

Proof (i) We first compute V440 (0, ). For o, & € Agzqre (Which do not depend on ), similarly
to (7.2) we have

1 1 o v g 1
P =5 w@ =3 ) allx). PUO0NX =) =
o nes . (7.13)
P0G Xy = x) = Y PO (X = x)g(Lxy, pdLa(Lx)ixn) = - Y d@(lxy).
2
X1E€ES X1ES

Then

JO, . x0.@) = EF G (X, ug)]

20 a. 5 a. 5
= 5~ SPOION(N, = 0)ug (x) — SPHTRTON(X, = D) ()
20 5 . 1 1 - 1
=373 a(l,x1) x 3 Z a(l,xq) — 3[1 —5 Z a(l,xl)][l —5 Z a(l,xl)]
X1 €S X1E€S X1 €S X1E€ES
1
= 5[3—4 Z a(l,xl)] Z a(l,xy) + = Z a(l,xy) — =
xX1€S x1€S xleS

Note that, when )", cg (1, x1) > 3, infge,,,. J(0. 14, X0, @) is achieved at & = 2. Since
D xieS % = % > 3 thena = % is an equilibrium with

2 1 7
J(O,u,3x0, =§[3—4§ }E:— z ——§=—-, Vxp €S.
X1 €S X1€S x1€

Similarly, when lees a(l,xy) < %, infgen,, .. J(0, 1, xo,a) is achieved at & = % Since

1 _ 2 3 1 - e . .
Y.xjes 3 = 3 < - thena = 3 is also an equilibrium with

J(O,,u,lxo, )——[— Z ]Z— —Z%—g=%, Vxg € S.

X1E€S X1€S X1 €S
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Moreover, when ZX €S a(l,x;) = %, then all &, including & = «, are minimizers of J, and thus
such « is an equilibrium. In this case

7 25
—§=— V.X'()ES.

3 3
J(O,,u,oc;xo,cx)=§ Zcx(l,xﬂ——:zx =

Put all cases together, we have Vgzq:¢(0, ) = {(—%, —%) (% %) (%, %)}

(ii) We next show that (0,0) € ()~ limy—co V, mte(O /LN) Set

altr p) = @) = 3oty + 3 et BY = el @ = 3 BY = (e > 51,

where « does not depend on (¢, x). Then, forany & : T x S x £(S) — A, recalling the setting in

Subsection 3.1 and denoting P? := PO-%-(@®)i  we have
Ji(0,%, (o, @)) = BF' [G(X, )] = T —EF [51d 0151y + 308 1315
20 1 Pi Pz
=5 - NE Blxg—g +31x-5) Z]E (510 —xicny + 3 oxiory)
J#t
20

———ZEP [seedact, xi. i) + 30 — )i a0, X{. 13)]] + 0(1)

20

i - . 7. . 1
5 ]EP [[2— 3()¢(1,)(;,M{V)]1EIN +1+ gaa,x;,ﬁ)]lw] +0(<):

Notice that, under each P?, X!, .-+, XN are i.i.d. with P{(X{ = x) = P/(X{ = %) = L. Thus

we may use a common P, under which X; has the above distribution, such that

Ji (0, %, (o, @);) = % —EP[[z - %&(1, X;,/ﬂl")]lElN +[1+ 5&(1, X{,M{V)]lEzN] + 0(%).
(7.14)
If we ignore the term O(%), clearly & = « is the minimizer of the above J;. Then for fixed ¢ > 0
and for N large enough, « is an e-minimizer for all 7, and thus « is an e-equilibrium. Note that
N =N, 1ixi_,, has distribution Binomial(N. 7) under P. Then P(EY) = ] when N

is odd, and -

sva¥ = Ny L L (N L
+1P’(Nu1(£)—2)—2+2N(%)—2+0(W)v

N =

when N is even. Thus

20

- 1 20 1 17 23 1 1

+51+0 O(W).

(7=
Since u¥ — u € Po(S), we have N ¢ Po(S) for N large enough. Then, in light of (3.5),
[ 2 My g g g

1
JN(O,xo,/Liy,a) = O(ﬁ) Vxo €S.
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This implies that (0,0) € (), IMy 0o Vsmte(O [ Ny.
(iii) We finally show that (0,0) € ()~ imy— oo VN “°(0, M;V). Set

State

1 2 1 N
N A
o (6%, 1) = S lu@s=pyy + 3lw@zany + 13 + 3 () = P8) Loy <pr<any:
. 11 1,1
where = —, :—— —
PN =5 "5N> N 2N

EY .= {u¥ ) <pn}. EY = {u) () = qn}. Eﬁv = {pn < ui (x) <gn}.

Then clearly oV € ASS,,,. For any & € ASS,,,, similarly to (7.14) we have

state>
= N ~ 20 _p 1. i N 7. i N

Ji (0, X, (« ,a),-)=3—]E [[2—305(1,)(1,“1 )]IE{V+[1+§a(1,X1,M1 Mgn

N , 3 , 1

— [Seut)at, xi, ul) + 30 — a0 — a1, X gy | + o)

Again, fix ¢ > 0 and consider N large enough. On E {V U Eév , it is optimal to choose @ = oV, up

to the error O(;). Then
. - . . 1
When N is odd, Eév = () and thus I@(Eév) = 0. When N is even,
I _ 1 1 N 1
PEY) =B ) = ) = 2—N( y ) —o(-L).

So in both cases, we have

That is, oV € Mg;tgo(() ;,LN) for N large enough. Thus Jy (0, ,,uﬁ alV) e Vgaifo(o, ug).
Then by similar arguments as in (ii) we see that (0,0) € ()., limy o0 V 1;’08, >°(0, I M. |

Remark 7.3 Consider the setting in Example 7.2 (ii). Denote P% = PO%% e have

o 1 N i
EF [y @] = - ) P (Xs=x ZEP wul]
i=1 l—l
1 — 1 2 _ 1
= P W =)+ P w>3) =5
[ . . |
EF 1 P = 55 20 PO = X] =0 = 15 3 EF o) Z]EP [l (ui)I?]
. =1 i#j
1 1, 4. ! L s 1
= §]P’(M{v(£) = 5) + §]P’(M{V(§) > 5) + O(ﬁ) =3 n O(N)
5 1 1 1 1
(Mz (x) = ﬁ—i-O( )_(5)2=%+0(ﬁ)-
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Then we see that the random measure ,uév under P%, which is an O(%ﬁ)-equilibrium measure of
the N -player problem, does not converge to a deterministic measure. This explains why [32] intro-
duced the weak mean field equilibrium when considering the convergence issue for all measurable
controls. However, we shall emphasize again that, as pointed out in Remark 3.8 (iii), measurable
controls/equilibria are not desirable for numerical or practical purpose.

7.2 The subtle path dependence issue in Remark 4.3

In this subsection we elaborate Remark 4.3 (ii) and (iii). Throughout the subsection, ¢, F, G are
state dependent as in Section 2. As we always saw in Example 7.1, in general Vsiare # Vparn,
confirming Remark 4.3 (ii). We now turn to Remark 4.3 (iii) for relaxed controls. For simplicity
we verify it only for raw set values. The equality for set values follow similar ideas but with more
involved approximations, as we saw in Example 7.1 (iv). Let 4, .;,, be the path dependent ones in
Section 4, and A7 ’e ‘;fl ¢ denote the subset taking the form y (¢, x, da). We emphasize again that here
we are considering state dependent ¢, F, G. Fix t = 0 and u € Py(S).

Lemma 7.4 Foranyy € A,o1qx, define

Z UrA(X)y(s,x,da), where uY (x) := Z wr . (x). (7.15)

xeXiXg=x xeX Xy =X

1
y(s,x,da) ;= ———
113 (x)

Then 7 € AS19%€ and u? = ul.

relax

Proof First it is obvious that
1
15 (x)

Yo =1,

xeX Xy =X

1
Y wa®@yexA) = —

o a
7S A) 1l (x)

xeXixg=Xx

s0 7 € AT Next, by definition ,ug = = jujy. Assume 1Y = 1Y, then for s + 1,

W = Y ul® fA 4G5, % 17 a: )7 (s, &, da)

X€S
- - 1
= WO [ detman e Y alyexda)
Xe€S A s (X x€X:xg=X
= 2w [ g ianysxda) = iy, (0.
A
xeXy
This completes the induction argument. |

Lemma 7.5 If y* € Ayelax is a relaxed MFE at (0, i), then the corresponding y* € Aite‘l’fli isa
state dependent relaxed MFE at (0, ). Moreover, in this case we have

JO, w, vy 5%, 7") = J(O, 1, 75 x, 7). (7.16)
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Proof First, by Lemma 7.4 it is straightforward to verify that

/ J(O. poy: x. y)u(dx) = / J(O0, 1 75 x. F)(d).
S S

On the other hand, since y* € sA;¢j4x» by the standard control theory we have

inf  JO,u,y*:x,7) =v(u? ;0,x) =v(u?:0,x) = inf  JO, 1, 7% x,y). (7.17)
YE€hreiax y/e'A'f’if(llffx
Then

/ JO. 73, 7)) = / JO. oy 3,y u(dx) = / V(17" 0, 1) (dx).
S S S

Since J(O, ., p*; x, 7*) > v(/ﬁ*;O,x) and supp (1) = S, then J(0, u, *; x,p*) = v(;ﬁ*;O,x)
for all x € S. This implies that 7* € 'A’iffll; ¢ is a state dependent relaxed MFE at (0, i), and

consequently (7.17) leads to (7.16). |

Theorem 7.6 The MFGs with state dependent relaxed controls and path dependent relaxed controls
have the same relaxed raw set value.

Proof By Lemma 7.5, clearly the path dependent raw set value is included in the state dependent
raw set value. On the other hand, for any state dependent relaxed control p* € A7 te[llttl ¢, we may
still view y* := $* as a path dependent relaxed control’, and it is straightforward to verify that the

7* e ASLale corresponding to y* is equal to p*. Then, following the arguments in Lemma 7.5,

in particular (7.17), one can easily show that J (0, i, y*: x, y*) = v(1?"; 0, x) and thus y* is also
an MFE among +A,..;,. Therefore, J(0, i, y*; -, y*) belong to the path dependent raw set value as
well. |

7.3 Some technical proofs

Proof of Theorem 2.7. Let Vyare (£, i) = (=g Viare(ts 1) denote the right side of (2.17) in the
obvious sense. We shall follow the arguments in Theorem 2.4.

(i) We first prove Vsmte(t, W) C Vare(t, ). Fix ¢ € qu,e(t,,u), e > 0, and set g1 := %.
Since ¢ € V7, (t. ), there exist desirable ¥ and a* € M2} ,,.(To. ¥:t, i) as in (2.17), and the
property ¥ (-, ,u‘}‘{i) € Vil (To, ,uf}‘;) implies further that there exists @* € M5} ;. (To, ,uf}‘;) such
that

”90 - J(TO’ WJ,M"X*;‘»O‘*)HOO = €1, ”W(? /’L(';b) - J(TO? M%‘O’&*??&*)”OO = e1.

"While it is trivial that AST97¢ C AP :lizhx = Ayelax as stated here, in general it is not trivial that MSLG7¢ C
M f :lizhx’ because for the latter one has to compare with other path dependent relax controls, which is a stronger require-

state ~ Mpath

state H
ment than that for M . The rest of the proof is exactly to prove Mre Tax relax:

relax
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Denote &* := o™ @1, @* € Agrare. Then, for any & € Agzqre and x € S, similar to the arguments
in Proposition 2.3 (i), we have

o*. To—1
J(@t, pn,a% x,0) = EP” o [J(To,ﬂ‘;wo,&*;XTo,Ol)—l- Z F(s, X5, u% ,oz(s,Xs))]
s=t
* To—1
ue tx.o * - *
> EP [(To. 1uy. &5 Xpg.6%) + Y Fls. X5 12" (s, X)) | 1
s=t

a*. !
=P o i) + DD s X i as X)) | = 21
sS=t

= J(To, ¥ t, o™ x, ) — 261 > J(To, V51, ju, a™; x,0®) — 3eq
. To—1
T xa* * 2 : *
= EPM I:W(XTO’ :U“%’o) + F(S’ Xs”u? ,O[*(S, XS))] —3a
s=t

a*. TO 1
> EP" T [J(To W 0% X1, @) + ) Fls. Xso i 0™ (s, Xs))] e

s=t

= J(t, 1, @ x,6%) —e.
That is, @* € ME,; ;. (t, ;t). Moreover, note that
llo — J(tvl‘L7&*; ’&*)”00 < &1+ [[J(To, Wif»llsa*ha*) - J(t»ll»&*§ ’&*)”00

= &1 + sup |[EF” e I:W(XTO,/L%;) - J(To,ﬂo%z,&*:XTo,&*)” <2 <e.

x€eS

Then ¢ € V¢, ,,.(t, ). Since & > 0 is arbitrary, we obtain ¢ € Vysaz0 (2, ().

(i) We now prove the opposite inclusion. Fix ¢ € Vsqze(¢f,4) and e > 0. Let &g > O be a
small number which will be specified later. Since ¢ € V., (¢, ), there exists a* € M§],,.(t, it)
such that | — J (¢, u,a*;-,a®)||co < &1. Introduce ¥ (x,v) := J(Tp, v,a™; x,a™*). By (2.10) we
have

lp — J(To, Y5t @™ @)oo = llo = J(t, @™+ %) [loo < &1

Moreover, since o™ € :Mﬁmte(t W), for any o € Agsqre and x € S, we have

J(TO,WQI‘,M,OI X, o )= J(t,,u,a X, o )

< J(t, p,a*;x,a d, ) + o1 = J(T, Y51, w05 x,0) + &1.
This implies that a* € M:},,,(To, ¥;1, ). We claim further that

V(1% € Voo, (To. 15, (7.18)

for some constant C > 1. Then by (2.17) we see that ¢ € V, thf}e(t n) C Vsmte(t W) by setting
g1 < % Since ¢ > 0 is arbitrary, we obtain ¢ € Vg4 (t, 10).

To show (7.18), we follow the arguments in Proposition 2.3 (ii). Recall v in (2.5) and the
standard DPP (2.11) for v, for any x € S we have

EF N STy o Xya)| = inf EPTUTT[0(To. g0t Xy o) | 4 e
state
— E]P.U- itx,o* |:U(IJ’ TO’XTO)] + &1,



It is obvious that v(u“*;To,.) < J(Tg,u‘;:,a*;-,oz*). Moreover, since ¢ > ¢4, clearly

i stxet (X7, = %) > cgo_t, for any X € S. Thus, for C := c(’)_TO,
0 < J(To,u‘%:,a*;i,a*) —o(u®"; Tp, X)
< CEP*T ([ (To. 15y 0*; Xy @) = 0 (s To, X7) sy =33 |
< CEP (T w0 Xpoa) — v Ty, Xr)]| < e,

This implies that o* € MEEL, (To. ). Since (-, %) = J(To, ;- &), we obtain (7.18)
immediately, and hence ¢ € Vsare(7, 11). |

Proof of the claim in Remark 4.7. By (4.16) and (4.17) we have

y @ (5,%, da) := (X) f QL (W 1% )8y (5.5 (da) AY (x, d)

path

M (X) / / 1_[ q(r%, M ;a(r,X); Xr+1)] X Sa(s x)(da) X

M(x)l_[ l_[ y(r,x,doz(r,i))]

r=t zexi*
s—1
= M?A(i)i)/A---A[r]_[:tq(r,i,My,a(r,i);xrﬂ)y(r,i,doz(r,i))]><
[bas(da)y(s. %, da(s. %) [] v(s.%da(s.%)] x
ReX(\ (R}
s—1 T-1
([T I vo-xdeGs)][]] [] v0- % de.%)]
r=t 3eXi*\{z} r=S zeXi™
_ MH(X()X) 1_[/ q(r,xX, 1w, a; xy+1)y(r, X, da)] [)/(s X, da)]
= My(x()i) Qs(W: X, y)y(s,X, da) = y(s,%, da).
That is, y(Ay) =y. |

Proof of Lemma 6.4. Clearly the uniform estimate for J(u*;-) implies that for v(u%;-), so we
shall only prove the former one. Fix (¢, u) € [0, T] x #» and o, & € Acons, and denote u(s, x) :=
J(u*; &, s, x). By standard PDE theory u is a classical solution to the linear PDE in (6.4) and we
have the following formula: denoting X;** := x + B, — By,

Br — B
Dau(s. ) = EP [[g(X7™ p) — g (v ) ——

T
B, — B
b [ T X G X D X)X G X )] P |
s r—s

52



Then, by the Lipschitz continuity of g and the boundedness of » and f,

|0xu(s, x)|

IA

B — Bs|? r B
E[Lo—l — il +C0/s [0 (r, X”)|+1]—| ’_S ldr]

A

C+CIE[ ' sy 1Br = Bs|
o |0 u(r, X5 )|—dr]
S

Denote Ky := S sup,. |dxu(s, x)|, K := sup,<s<7 Ks, for some constant A > 0. Then

A T Kre—k(r—s) N —A(r s)
Ky, < Ce™ +C dr<Ces+CK/
S 0 s T — S 0 «/r -5
As e A=) As > As Co -
< Ce —I—COK/ ———dr =Ce +C0K/ dr=Ce + K.
N —S 0 r VA
C AT _1 P ._ AT :
Thus K < JO—K + Ce™ . Set A := m = 5, we obtain K < Cy := 2Ce*", which
implies the desired estimate 1mmed1ately |

Proof of Proposition 6.7. Fix (1, X,a,X,x) and i. For any @ € Acom, introduce a(s, x, u) =
a(s,x — X + X, i), and denote

Xi-:j+Bi—Bf, Xf:sz+Bsi—Bf, JF#Ei

N

i S _ 1S .
T Xz —I—Z M] = exp(/ bldB] —5/ |b{|2dr),j > 1, where
J?él ! !
D= b XL N a(s, X alNy), bl = b(s. X7 a s X i), j #i
S s7/~'LS ya S, S’MS ) s S9 S’/"LS 7aj s? s?l’Ls 7] L.

By the Girsanov Theorem we have
. . N —_ ] - T - -
Jite, ). @) = B[ [T St lle R i + [ o XLl s X ¥ s |
j=1 !

Similarly define X7, gV, M/ b bI corresponding to (¥, @) in the obvious sense. Then we have a
similar expression as above and als, X L) =a(s, X +, 1v). Therefore,

o (L G R).E) - S TR, @ @)
N

< Ji(t, (_’—l x),(oz_’ a)) — Ji(t, ("—l );)’(&—i’&)) <C ZK%’ + Ko. (7.19)
Jj=1
where

ki = E[[T] 08 [T o) - i), =
k<j k>j
N w j - ~

Ko = E[ [T Mi[ls(Xp. i) - (X i)
j=1

T
b 1 XY o X ) - £ K s X Y las]]
t
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Denote Ax := x — Xx. Note that
|Ax]|

g y _ N I3 (7.20)
(s, X5 i) —a(s, XL al)| = |a(s. X5 gy —as, X2 alV)| < 1Al

Xi-Xi=ax, wm@d.m)) <

By the required Lipschitz continuity, we have
N 1 T L
Ko < CIEP[ [T M1+ N]|Ax| +/ [1+ N]IAx|ds]] < C|Ax]. (7.21)
j=1 !

Next, introduce

rJ = B[[ [T 25 [] #4008/ P, ary = B[ ] a24][ [T 5210t/ - ot/

k<j k>j k<j k>j
Note that B!, --- , BV are independent. By applying the Itd formula, we have
N N
t/ =1+ [ B[ T s [] F13260 P Jar <1+ [ riar
d k<j k>j t

Then st < C. Thus, by applying the It6 formula again we have

arj = [TE[(T] sf) [T a1t/ 67 — a5 2 )ar

k<j k>j

A

c BT 411 [T 9087~ 0871+ 3 157 — 671

k<j k>j

IA

c/jm,fdwc/jm[[ [T MK [T MM 15 —15;'|]2]dr.

k<j k>j

Note that, by (7.20),
B = i) = |bGs, X2 & s X5 i) - b(s, K& i ats, XL )| = Crlax
_. ~. C
b} =Bl < Flaxl. j #i.

Then, since I'{ < C,

N

. s . ) . C
AT! §C/ ATLdr + Cp|Ax|?, AT §C/ Ar,fdr+N—L2|Ax|2, j#i.
t t

and thus

, . |Ax| AT
ATE < CL|Ax|?, K’<|— S < Cr|Ax|;

J
S = N2 S = 2N ' 2/Ax]| = N

(7.22)

Ax|, J #I.
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Then, by (7.19), (7.21) and (7.22) we have

o (e T R).8) — S TR, @ @) < Ko+ CKL+ C Y K]

1

J#i
|Ax|
< ClAx|+ CL|Ax|+CL ) v = Crlaxl.
J#i
. ~ L : . . N,L S—j o=\ = N,L S—j o~ = ..

Since & € A™ is arbitrary, we obtain v, (t, (x ,x),a) —v; (t, (x ,x),a) < Cr|Ax|. Simi-
larly we have viN’L (t, (xX75, %), 5{) — v(t, (X7, %), &) < CL|Ax]|, and hence (6.16). [ |
References

[1]

(2]

[10]

[11]

[12]

Abreu, D.; Pearce, D.; and Stacchetti, E., Toward a Theory of Discounted Repeated Games
with Imperfect Monitoring, Econometrica, 58 (1990), 1041-1063.

Bardi, M. and Fischer, M., On non-uniqueness and uniqueness of solutions in finite-horizon
Mean Field Games, ESAIM: Control, Optimization and Calculus of Variations, 25 (2019), 44.

Bayraktar, E. and Cohen, A., Analysis of a finite state many player using its master equation,
SIAM J. Control Optim. 56 (2018), 3538-3568.

Bayraktar, E.; Cecchin, A.; Cohen, A.; and Delarue, F., Finite state mean field games with
Wright-Fisher common noise, J. Math. Pures et Appliquées, 147 (2021), 98-162.

Bayraktar, E.; Cecchin, A.; Cohen, A.; and Delarue, F., Finite state mean field games with
Wright-Fisher common noise as limits of N -player weighted games, Mathematics of Opera-
tions Research, accepted, arXiv:2012.04845.

Bensoussan, A.; Frehse, J.; and Yam, S. C. P.,, Mean Field Games and Mean Field Type Control
Theory, (2013). New York: Springer Verlag.

Caines, P. E.; Huang, M.; and Malhamé, R. P., Large population stochastic dynamic games:
closed loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun.
Inf. Syst., 6 (2006), 221-251.

Cardaliaguet, P., Notes on mean field games, lectures by P.L.. Lions, College de France, (2010).

Cardaliaguet, P., The convergence problem in mean field games with local coupling, Applied
Mathematics & Optimization, 76 (2017), 177-215.

Cardaliaguet, P.; Delarue, F.; Lasry, J.M.; and Lions, P.L., The master equation and the conver-
gence problem in mean field games, Annals of Mathematics Studies, 201. Princeton University
Press, Princeton, NJ, (2019). x+212 pp.

Carmona, G., Nash Equilibria of Games with a Continuum of Players, Game Theory and
Information, 0412009, University Library of Munich, Germany, 2004.

Carmona, R. and Delarue, F. Probabilistic Analysis of Mean-Field Games, SIAM Journal on
Control and Optimization, 51 (2013), 2705-2734.

55



[13] Carmona, R. and Delarue, F., Probabilistic theory of mean field games with applications I -
Mean field FBSDEs, control, and games, Probability Theory and Stochastic Modeling, 83.
Springer, Cham, (2018).

[14] Carmona, R. and Delarue, F., Probabilistic theory of mean field games with applications II -
Mean field games with common noise and master equations, Probability Theory and Stochastic
Modeling, 84. Springer, Cham, (2018).

[15] Cecchin A.; Dai Pra P.; Fischer M.; and Pelino G., On the convergence problem in mean field
games: a two state model without uniqueness, SIAM J. Control Optim. 57 (2019), 2443-2466.

[16] Cecchin A. and Delarue F., Selection by vanishing common noise for potential finite state mean
field games, Communications in Partial Differential Equations, 47 (2022), 89-168.

[17] Cecchin, A. and Pelino, G., Convergence, Fluctuations and Large Deviations for finite state
Mean Field Games via the Master Equation. Stoch. Process. Appl. 129 (2019), 4510-4555.

[18] Delarue, F., Restoring uniqueness to mean-field games by randomizing the equilibria, Stochas-
tic and Partial Differential Equations: Analysis and Computations, 7 (2019), 598-678.

[19] Delarue, F. and Foguen Tchuendom, R., Selection of equilibria in a linear quadratic mean-
field game, Stochastic Process. Appl. 130 (2020), 1000-1040.

[20] Delarue, F.; Lacker D.; and Ramanan, K., From the master equation to mean field game limit
theory: Large deviations and concentration of measure. Ann. Probab. 48 (2020), 211-263.

[21] Delarue, F.; Lacker D.; and Ramanan, K., From the master equation to mean field game limit
theory: A central limit theorem. Electron. J. Probab. 24 (2019), 1-54.

[22] Djete, M. F., Large population games with interactions through controls and common noise:
convergence results and equivalence between open-loop and closed-loop controls, ESAIM:
COCYV, 2023, vol. 29, p. 39. DOI: 10.1051/cocv/2023005.

[23] Feinstein, Z., Continuity and Sensitivity Analysis of Parameterized Nash Games. Econ Theory
Bull (2022). https://doi.org/10.1007/s40505-022-00228-0.

[24] Feinstein, Z.; Rudloff, B.; and Zhang, J. Dynamic set values for nonzero sum games with
multiple equilibria, Mathematics of Operations Research, 47 (2022), 616-642.

[25] Feleqi, E., The Derivation of Ergodic Mean Field Game Equations for Several Populations of
Players. Dynamic Games and Applications, 3 (2013), 523-536.

[26] Fischer, M., On the connection between symmetric N-player games and mean field games. The
Annals of Applied Probability, 27 (2017), 757-810.

[27] Fischer, M. and Silva, FJ., On the Asymptotic Nature of First Order Mean Field Games Ap-
plied Mathematics & Optimization (2020), 1432-0606.

[28] Foguen Tchuendom, R., Uniqueness for linear-quardratic mean field games with common
noise, Dynamic Games and Applications 8 (2018), 199-210.

56



[29] Gangbo, W. and Mészéros, A.R., Global well-posedness of master equations for determin-
istic displacement convex potential mean field games, Comm. Pure Appl. Math., (2022),
https://doi.org/10.1002/cpa.22069.

[30] M. Iseri and J. Zhang, Set Valued Hamilton-Jacobi-Bellman Equations, preprint,
arXiv:2311.05727.

[31] Lacker, D., A general characterization of the mean field limit for stochastic differential games,
Probab. Th. Rel. Fields 165 (2016), 581-648.

[32] Lacker, D., On the convergence of closed loop Nash equilibria to the mean field game limit,
Ann. Appl. Probab. 30 (2020), 1693-1761.

[33] Lacker, D., Le Flem, L., Closed-loop convergence for mean field games with common noise,
Ann. Appl. Probab., 33 (4), 2681 - 2733, August 2023. DOI: 10.1214/22-AAP1876.

[34] Lasry, J.-M. and Lions, P.-L., Mean field games, Jpn. J. Math. 2 (2007), 229-260.

[35] Lauriere, M. and Tangpi, L. Convergence of large population games to mean field games
with interaction through the controls, SIAM Journal on Mathematical Analysis, 54 (2022),
10.1137/22M1469328.

[36] Lions, P.-L., Cours au College de France, www.college-de-france.fr.
[37] Ma, J., Zhang, J., and Zhang, Z. Deep learning methods for set valued PDEs, working paper.

[38] Mou, C. and Zhang, J., Wellposedness of second order master equations for mean field games
with nonsmooth data, Memoirs of the AMS, accepted, arXiv:1903.09907.

[39] Nutz, M.; San Martin, J.; and Tan, X., Convergence to the Mean Field Game Limit: A Case
Study, Annals of Applied Probability, 30 (2020), 259-286.

[40] Pham, T. and Zhang, J., Two person zero—sum game in weak formulation and path dependent
Bellman-Isaacs equation. SIAM Journal on Control and Optimization, 52 (2004), 2090-2121.

[41] Possamai, D. and Tangpi, L., Non-asymptotic convergence rates for mean-field games: weak
Sformulation and McKean—Vlasov BSDEs, preprint, arXiv:2105.00484.

[42] Sannikov, Y., Games with Imperfectly Observable Actions in Continuous Time, Econometrica,
75 (2007), 1285-1329.

[43] Zhang, J., Backward Stochastic Differential Equations — from linear to fully nonlinear theory,
Probability Theory and Stochastic Modeling 86, Springer, New York, 2017.

57



	1 Introduction
	2 Mean field games on finite space with closed loop controls
	2.1 The basic setting
	2.2 The raw set value V_0 
	2.3 The set value V_state 

	3 The N-player game with homogeneous equilibria
	3.1 The N-player game
	3.2 Convergence of the empirical measures
	3.3 Convergence of the set values

	4 Mean field games on finite space with relaxed controls
	4.1 The relaxed set value with path dependent controls
	4.2 An alternative formulation of the relaxed mean field game

	5 The N-player game with heterogeneous equilibria
	5.1 The N-player game
	5.2 From N-player games to mean field games
	5.3 From mean field games to N-player games

	6 A continuous time model with controlled diffusions
	6.1 The mean field game and the dynamic programming principle
	6.2 Convergence of the N-player game

	7 Appendix
	7.1 Some examples
	7.2 The subtle path dependence issue in Remark 4.3
	7.3 Some technical proofs


